Zoosyst. Evol. 100 (2) 2024, 483-492 | DOI 10.3897/zse.100.119915 > PENSUFT. yee BERLIN Oxynoemacheilus kottelati, a new species from the Havran and Karinca streams in Northern Aegean Basin, Tiirkiye (Teleostei, Nemacheilidae) Davut Turan‘, Sadi Aksu*, Salim Serkan Giiclii®, Gékhan Kalayci! 1 Recep Tayyip Erdogan University, Faculty of Fisheries, Rize, Turkiye 2 Eskisehir Osmangazi University, Vocational School of Health Services, Eskisehir, Turkiye 3 Isparta University of Applied Sciences, Faculty of Egirdir Fisheries, Isparta, Turkiye https://zoobank. org/3 B0940F 0-970F-4C DE-9323-6BBD4413DABC Corresponding author: Gékhan Kalayci (gokhan.kalayci@erdogan.edu.tr) Academic editor: Nicolas Hubert # Received 31 January 2024 # Accepted 2 April 2024 # Published 9 May 2024 Abstract The taxonomic status of the Oxynoemacheilus from the Karinca and Havran streams in the north Aegean Basin was evaluated, and it was concluded that these populations contain a new species. The new species, Oxynoemacheilus kottelati sp. nov., is distinguished by a body with a marbled pattern, a deeper caudal peduncle, a shorter caudal peduncle, a wider interorbital distance, and a shorter middle caudal-fin lope. Oxynoemacheilus kottelati sp. nov. is differentiated from the closest species, O. marmaraensis, in possess- ing 51 nucleotide substitution sites, a genetic distance of 8.40%, the presence of an axillary lobe at the base of the pelvic fin (vs. absent), and a narrower median incision in the upper lip (vs. absent). Three species delimitation tests (ASAP, ABGD, and PTP) and phylogenetic analyses reinforce the validity of O. kottelati sp. nov. as a distinct species. Key Words Anatolia, COI, freshwater fish, loach, taxonomy Introduction The species-rich genus Oxynoemacheilus, established by Banarescu and Nalbant in 1966 within the family Nemacheilidae, exhibits a wide distribution across the Eastern Mediterranean, the southern Caucasus, Anato- lia, Mesopotamia, and Central Iran (Freyhof et al. 2011; Kottelat 2012). Despite its extensive range, our under- standing of its diversity remains limited, particularly in the Asian portion of its distribution, where several new species have been described in recent years, notably from the Anatolian and Tigris River drainages. A total of 67 Species within this genus have been described or reported in the literature (Erk’akan et al. 2007; Freyhof et al. 2011; Erk’akan 2012; Kamangar et al. 2014; Freyhof 2016; Sayyadzadeh et al. 2016; Freyhof and Abdullah 2017; Freyhof et al. 2017; Freyhof and Ozulu 2017; Turan et al. 2019; Bektas et al. 2022; YoSurtcuoglu et al. 2022; Cicek et al. 2023; Turan et al. 2023a, b). Forty-eight of these species are distributed in inland waters throughout Turkiye, with 36 of them being endemic to the region. The Tigris and Euphrates basins harbor the highest number of Oxynoemacheilus species in Turkiye (n = 16), followed by the Mediterranean (n = 14), the Black Sea (n = 6), the Caspian (n = 4), the Aegean (n = 4), Konya (n = 2), Marmara (n = 2), and the Van basins (n = 1). Notably, the Oxynoemacheilus species distributed in the Aegean basin of Turkiye have not been adequately investigated. In the Aegean region, Erk’akan et al. (2007) and Erk’akan (2012) described three species from the Buytik Menderes River: Barbatula germencicus from around Aydin-Germencik, Barbatula cinica from Cindere Stream between Kiitahya and Denizli, and Barbatula mesudae from Buryuk Menderes around Civril. YoSurtcuoglu et al. Copyright Turan, D. et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 484 (2022) and Bektas et al. (2022) later reported these species as synonyms of O. germencicus. Stoumboudi et al. (2006) described O. theophilii from Lesbos Island in Greece, based on three individuals. Subsequently, YoSurtcuoSlu et al. (2022) recognized three species in the Aegean ba- sin: O. theophilii (Bakir Stream), O. germencicus (Buyuk Menderes and Gediz rivers), and O. e/iasi (Tahtali reser- voir, Kuctik Menderes, and Gediz rivers). Additionally, Turan et al. (2024) described O. fatmae from the Guzel- hisar Stream. Considering the reported species, Oxynoe- macheilus appears to be in a poor region in terms of spe- cies composition. However, in the detailed field studies we have carried out recently, it has been seen that there are still undescribed species in the Aegean region. In this study, specimens from Havran and Karinca streams were examined and compared with other species from the Aegean and adjacent basins. The comparison re- sults revealed that the materials from Havran and Karinca streams belong to a new species named O. kottelati. Materials and methods The fish samplings and experiments conducted in this study were approved by the Recep Tayyip Erdogan Uni- versity Local Ethics Committee for Animal Experiments in the Republic of Turkiye, under permit reference number 2020/4. Following anesthesia, sample fixation was initial- ly carried out in 5% formaldehyde, with subsequent 1m- mersion in 70% ethanol whenever feasible. Alternatively, some samples were directly fixed in absolute ethanol for tissue collection for genetic analysis. Measurements were performed using a dial caliper set precisely to 0.1 mm, adhering to the stringent point-to-point measurement pro- cedures outlined in the guidelines provided by Kottelat and Freyhof (2007). Morphometric data for O. angorae, O. simavicus, and O. marmaraensis were sourced from Turan et al. (2019) and Turan et al. (2023b), respectively. DNA extraction, PCR, sequencing, and molecular analysis DNA was isolated from fin clips via Hibrigen genomic DNA extraction kits. DNA quality was checked by aga- rose gel electrophoresis. The vertebrata CO/ barcode re- gion (624 bp) was amplified with the FishF1 and FishR1 (Ward et al. 2005) primer pairs. The PCR reactions’ con- ditions and components’ volumes were detailed in Turan et al. (2023a). The PCR products were visualized with a gel documentation system, and eligible PCR products were sent to Macrogen Europa Inc. (Amsterdam, Neth- erlands) for purification and Sanger sequencing with the ABI PRISM 3730XL Genetic Analyzer (Applied Bio- systems; appliedbiosystems.com). We have used the six newly produced COI barcodes and 41 sequences from previously published studies (Geiger et al. 2014; Turan et al. 2019; Bektas et al. 2022; YoSurtcuoglu et al. 2022) for the molecular data analysis. Oxynoemacheilus bureschi zse.pensoft.net Turan, D. et al.: A new loach species from Anatolia (Genbank number: KJ553692) and Seminemacheilus lendlii (Genbank number: MT077008) were added to the analysis as outgroup taxa. Multiple sequence alignment was done with Clustal W options (Thompson et al. 1994) in Bioedit v7.2.5 software (Hall 1999). Sequences were submitted to NCBI GenBank with accession numbers PP085162—PP085167. Phylogenetic correlations were determined with maximum likelihood (ML) and Bayes- ian inference (BI) analysis using MEGA X (Kumar et al. 2018) and MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003) software. The nucleotide substitution model was estimated as the TrN+G model (Tamura and Nei 1993) concerning the Bayesian information criterion (BIC) in jModeltest v. 0.0.1 (Posada 2008). To estimate pairwise genetic distances, a p-distance model was used in MEGA X software. In total, three single-locus species delimita- tion methods were used as follows: ASAP (Puillandre et al. 2021), ABGD (Puillandre et al. 2012), and GMYC (Fu- jisawa and Barraclough 2013). Analysis parameters and settings were given in the study by Turan et al. (2023a, b). Collection codes IFC-ESUF, Inland Fishes Collection, Faculty of Egirdir Fisheries, Isparta University of Applied Sciences, Isparta; and FFR, Zoology Museum, Faculty of Fisheries, Recep Tayyip Erdogan University, Rize. Results Phylogenetic placement of Oxynoemacheilus kottelati COI barcode region sequences were analyzed in elev- en Oxynoemacheilus species distributed in the Aegean and Marmara basins. The species were divided into two main clades in all the phylogenetic analyses, support- ed by high bootstrap values. The first clade consists of O. kottelati sp. nov. and O. marmaraensis. The second clade consists of O. anatolicus, O. angorae, O. eliasi, O. fatmae, O. germencicus, O. mediterraneus, O. nasred- dini, O. simavicus, and O. theophilii. Oxynoemacheilus kottelati sp. nov. constituted a highly supported clade sis- ter to O. marmaraensis (Fig. 5). The uncorrected p dis- tance between species ranged from 1.00% (O. mediter- raneus and O. nasreddini) to 11.2% (O. kottelati sp. nov. and O. simavicus). The p-distance was determined to be 8.4% between O. kottelati sp. nov. and its closest relative, O. marmaraensis (Table 3). Oxynoemacheilus kottelati sp. nov. differed from its most closely related congener, O. marmaraensis, by 51 nucleotide substitution sites. In the ASAP analysis, we found 10 OTUs. ASAP’s best partition (score = 3.50) results from a p-distance threshold of 0.012428. However, the PTP determined 13 clusters, and ABGD resulted in 12 groups. Some barcoding analyses tended to over-split; however, O. kottelati sp. nov. was pre- dicted as a candidate species in all three barcoding analyses. Zoosyst. Evol. 100 (2) 2024, 483-492 Morphological differences and comparisons The genetically closest species to Oxynoemacheilus kotte- lati sp. nov. is O. marmaraensis, distributed in the Susurluk River (Marmara basin). It is distinguished from O. marma- raensis by body color and pattern (marbled vs. vermiculat- ed), presence of an axillary lobe at the base of the pelvic fin (vs. absent), a narrower median incision in the upper lip (vs. absent), and 4—6 small irregularly shaped narrow greyish or brownish saddles on the dorsal part of the cau- dal peduncle (vs. 3-4). Oxynoemacheilus kottelati sp. nov. differs from O. theophilii by having a greater interorbital distance (28-36% SL, vs. 20-28), the absence of the dorsal and ventral adipose crest on the caudal peduncle (vs. slight- ly developed), and no black bars or blocks on the flank (vs. 10-13 small irregularly shaped black bars or blocks on the flank in most individuals). Oxynoemacheilus kottelati sp. nov. differs from O. e/iasi in having a shorter caudal pe- duncle (13-16, vs. 17—21), a greater interorbital distance (28-36% SL, vs. 20-27), the depth of the caudal pedun- cle 1.0—-1.3, vs. 1.5—1.7 times in its length, and the body marbled pattern (vs. more or less black or brown blocks on the flank in most individuals). Oxynoemacheilus kottelati sp. nov. differs from O. germencicus by having a shorter caudal peduncle (13-16, vs. 16-22), the depth of the cau- dal peduncle 1.0—1.3, vs. 1.3—2.2 times in its length, and the body marbled pattern (vs. more or less black or brown blocks on the flank in most individuals). Oxynoemacheilus kottelati sp. nov. differs from O. angorae by having a short- er postdorsal distance (31-36% SL, vs. 38-42), a deeper caudal peduncle (12-14% SL, vs. 10-12), a shorter caudal i agit oR Pes pal? eC ae ; * hes ES = ~ — a 485 peduncle (13-16, vs. 16-19), the depth of caudal pedun- cle 1.0-1.3, vs. 1.41.8 times in its length, and the body marbled pattern (vs. showing a dark-brown mid lateral stripe or a series of fused, dark-brown blotches interrupted by a whitish or pale brown lateral line). Oxynoemachei- lus kottelati sp. nov. differs from O. simavicus by having a longer head (24-27% SL, 19-22), a deeper caudal pe- duncle (12-14% SL, vs. 6-10), a deeper body (body depth at dorsal-fin origin 18-22% SL, vs. 12-17), the depth of the caudal peduncle 1.0—1.3, vs. 2.2—3.1 times in its length, and the body marbled pattern (vs. 2-8 dark brown blocks on flank). It differs from O. fatmae by the body color and pattern (marbled vs. having 4-8 irregularly shaped narrow black bars commonly on the posterior part of the flank and anterior part of the flank with a marbled pattern), having a deeper caudal peduncle (12-14% SL, vs. 10-12), a shorter caudal peduncle (14-16% SL, vs. 17—20), a longer middle caudal-fin lobe (21—24% SL, vs. 16-19), and a greater in- terorbital distance (28-36% HL, vs. 21—26). Thus, we describe Oxynoemacheilus populations from Karinca and Havran streams as a new species, Oxynoe- macheilus kottelati sp. nov. Oxynoemacheilus kottelati sp. nov. https://zoobank. org/FDB3F47E-E4B4-41 1 F-8D82-F4A BOSBC2F3A Figs 1, 2 Type material. Holotype: FFR 15655, 47 mm SL, male; Turkiye, Balikesir prov., Havran Stream, F. Aksu, S. Aksu, 26 October 2023, 39°30'33.3"N, 27°09'39.0"E. < sgeadeetons ey Figure 1. Oxynoemacheilus kottelati sp. nov., FFR 15655, a, b. Holotype, male, 47 mm SL; FFR 15656; ¢. Paratype, female, 49 mm SL; Turkiye, Balikesir prov., Havran Stream. zse.pensoft.net 486 Turan, D. et al.: A new loach species from Anatolia Figure 2. Oxynoemacheilus kottelati sp. nov., FFR 15657, paratypes: a. Male, 47 mm SL; b. Female, 46 mm SL; ec. Male, 45 mm SL; Havran Stream; FFR 15656; d. Female, 48 mm SL; Karinca Stream; Turkiye, Balikesir prov. Paratypes: FFR 15657, 21, 39-50 mm SL; same data as holotype. FFR 15656, 34, 35-54 mm SL; Turkiye, Balikesir prov., Karinca Stream, F. Aksu, S. Aksu, 26 Oc- tober 2023, 39°27'12.2"N, 27°00'30.9"E. Material used in molecular genetic analysis. FFRDNA 15657, 6; Turktye, Balikesir prov., Karinca Stream, 39°27'12.2"N, 27°00'30.9"E. (GenBank accession num- bers: PP085162—PP085167). Diagnosis. Oxynoemacheilus kottelati sp. nov. is dis- tinguished from other species in the Aegean and adjacent basins due to a distinctive combination of characteristics: a body with a marbled pattern (vs. more or less irregu- larly shaped dark brown or pale brown blocks or bars on the flank in O. germencicus, O. theophilii, O. eliasi, O. simavicus, O. fatmae, and O. angorae), a deeper cau- dal peduncle (caudal peduncle depth 1.0—1.3 in its length, vs. 1.3—2.2, except O. theophilii), and a wider interorbital distance (28-36% HL, vs. 20-28, except O. germencicus and O. angorae). It is distinguished from O. marmar- aensis by the presence of an axillary lobe at the base of the pelvic fin (vs. absent) and a narrower median incision in the upper lip (Fig. 3a, b; vs. absent; Fig. 3c, d). zse.pensoft.net Description. The general appearance of the species 1s de- picted in Figs 1, 2, with accompanying morphometric data provided in Table 1. The body is deep and compressed at the caudal peduncle, with the greatest depth occurring slight- ly in front of the dorsal-fin origin and gradually decreasing towards the base of the caudal fin. There is no noticeable hump at the nape, and the greatest body width 1s observed at the pectoral-fin base. The head is pointed, featuring a straight upper profile at the interorbital area and a convex profile on the snout. The snout is somewhat long and slight- ly pointed at the tip. Mouths are narrow and arched, with slightly developed lips, and there is a narrow median inter- ruption in the lower lip and a narrow median incision in the upper lip. Males typically exhibit a suborbital groove. Bar- bels are somewhat long, with the inner rostral barbel typi- cally reaching to the base of the maxillary barbel in most individuals and the outer rostral barbel reaching vertically through the anterior eye margin. The maxillary barbel usu- ally extends to the posterior eye margin in most individuals. The caudal peduncle 1s deep and laterally compressed, with a length 1.0—1.3 times longer than its depth. An axillary lobe is present at the pelvic-fin base, albeit very slightly devel- Zoosyst. Evol. 100 (2) 2024, 483-492 Table 1. Morphometric data of Oxynoemacheilus kottelati sp. nov. (holotype FFR 115655 and paratypes FFR 15657, n= 21). O. kottelati(n = 21) SD H Range (mean) Standard length (mm) 47 39-50 In percent of standard length Head length 25.5 23.6-27.1 (25.3) 0.8 Body depth at dorsal-fin origin 19.3 17.8-21.6 (19.2) 0.9 Body width at dorsal-fin origin 14.0 11.9-15.4 (13.5) 0.8 Predorsal length 53.0 49.5-54.1 (51.4) 1.3 Postdorsal length 34.9 31.3-35.9 (34.2) 1.3 Preanal length 74.7 72.1-80.0 (75.3) 1.6 Prepelvic length 50.9 48.7-54.2 (51.1) 1.3 Dist. betw. pectoral and pelvic-fin 28.4 26.0-31.2 (28.6) 1.2 origins Dist. between pelvic and anal-fin 23.2: 21 :2-26,2 (23:5) 1.2 origins Depth of caudal peduncle 13.1 11.6-14.2 (12.8) 0.6 Length of caudal peduncle 15.2 13.0-16.2 (15.0) 0.9 Dorsal-fin depth 23.3.20,1-26.2:(22.5). 1:2 Analfin depth 18.4 16.6-22.1 (18.4) 1.3 Pectoral-fin length 22.7 20.0-25.0 (22.2) 1.7 Pelvic-fin length 17.7 14.8-19.6 (17.2) 1.1 Caudal-fin length 27.1 24.2-30.2 (27.5) 1.4 Middle lop of caudal-fin length 24.3 20.7-24.3 (22.6) 1.1 In percent of head length Head depth at eye 43.5 37.8-47.1 (41.7) 2.5 Snout length 38.3 32.4-42.6 (37.5) 2.9 Eye diameter 16.5 16.5-25.6 (20.1) 2.3 Postorbital distance 48.5 45.2-59.8 (50.6) 3.7 Maximum head width 57.2 49.9-63.8 (57.3) 3.7 Interorbital width 30.8 27.7-35.6 (30.9) 2.4 Length of inner rostral barbel 30.9 24.8-40.7 (29.2) 3.4 Length of outer rostral barbel 37.7 32.0-42.8 (36.0) 2.3 Length of maxillary barbel 25.6 25.6-36.8 (32.1) 3.0 In percent of caudal peduncle length Depth of caudal peduncle 12 eT O=1 22S OIF In percent of body depth at dorsal-fin origin Caudal peduncle depth 69.4 69-86 (79) Bul In percent of length of caudal-fin length Length of middle caudal-fin lope 89.6 76-90 (82) 4.1 oped and fully attached to the body. The pelvic-fin origin typically lies below the first or second branched dorsal-fin ray, and the anal-fin origin is positioned vertically behind the dorsal-fin tip. In males, the pectoral fin almost reaches vertically through the tip of the dorsal-fin origin, whereas in females, it falls short of this mark. There are no dorsal or ventral adipose crests present on the caudal peduncle. The lateral line is complete, extending to the base of the caudal fin. The body is covered by embedded scales on the flank, back, and belly. The dorsal fin typically possesses 7/2-8'% branched rays, with its outer margin being straight. The anal fin typically has 5/2 branched rays along with a straight out- er margin. The pectoral fin usually comprises 10—12 rays, with its outer margin either straight or slightly convex. The pelvic fin typically consists of 7-8 rays, with its outer mar- gin straight or slightly convex. The caudal fins are deeply emarginated, with lobes that are slightly rounded. 487 Coloration. The body has a marbled pattern; the general body color is brownish in live specimens and grayish in pre- served individuals. In the population of the Karinca Stream, the head and cheeks are plain without any discernible col- or pattern ventrally, whereas in the Havran population, the head and cheeks display a modeled pattern. There is no pig- mentation below a line extending from the pectoral-fin base to the anus. A small, irregularly shaped, dark-brown blotch is present at the origin of the dorsal fin. The flank appears plain grayish with a marbled pattern, while the back may exhibit zero to six small, slightly distinct brownish blotch- es anterior to the dorsal fin origin. The dorsal part of the caudal peduncle bears 4—6 small, irregularly shaped, small, and narrow greyish or brownish saddles. Additionally, one vertically elongated black spot is observed on the base of the caudal peduncle fin. The dorsal fin typically displays 2-3 fine, irregularly shaped black bands on its rays, while the caudal fin may feature 2-4 similar bands. The anal, pectoral, and pelvic fins present a yellowish hue, with the pectoral fins occasionally exhibiting a few small black spots on the rays. Distribution. Oxynoemacheilus kottelati sp. nov. was found in the Havran and Karinca streams, which are drainages in the Northern Aegean Sea basin (Fig. 4). Etymology. This species is named in honor of Maurice Kottelat, whose contributions significantly advanced the understanding of the world’s fish fauna. Discussion The newly identified species, Oxynoemacheilus kottelati Sp. nov., exhibits a close genetic relationship to O. mar- maraensis, aS indicated by the genetic dataset, showing a genetic distance of 8.4% between the two species. Both genetic divergences sufficiently support their distinctive- ness, as the two species are clearly distinguished from each other morphologically (see comparison section above). We obtained some morphometric data from the Sasal Stream (a drainage of Tahtali reservoir), Biytik Menderes, and Gediz rivers (Table 2). The morphometric data for O. germencicus (FFR 1523, n= 7, 52-58 mm SL; FFR 1528, n= 12, 39-56 mm SL; IFC-ESUF 19-0015, n= 11, 44-65 mm SL; IFC-ESUF 19-0016, n = 7, 47-59 mm SL) are as follows: body depth at dorsal-fin origin 15—23% SL; caudal peduncle depth 9-13% SL; caudal peduncle depth 1.3—2.2 times in length; interorbital distance 19-32% HL; and cau- dal-fin length 21-32% SL. The morphometric data for O. eliasi (FFR 1558, n= 7, 38-41 mm SL and IFC-ESUF 19- 0015, n = 11, 44-65 mm SL; IFC-ESUF 19-0016, n = 7, 47-59 mm SL) are: body depth at dorsal-fin origin 19-22% SL in Sasal and 17—22% SL in Gediz; caudal peduncle depth 12-13% SL in two populations; caudal peduncle length 1.5— 1.7 times its depth in two populations; interorbital distance 21—26 in Sasal and 20-27% SL in Gediz; and caudal-fin length 21-29% SL in two populations. The morphometric data obtained from O. theophilii from the Bakir Stream (FFR 15538, n= 14, 38-55 mm SL) are: body depth at dorsal-fin origin 17-19% SL; caudal peduncle depth 12-14% SL; cau- dal peduncle length 1.2—1.5 times its depth; interorbital dis- zse.pensoft.net 488 Turan, D. et al.: A new loach species from Anatolia Table 2. Morphometric data of Oxynoemacheilus germencicus (FFR 1523, n = 7, 52-58 mm SL; FFR 1528, n = 12, 39-56 mm SL; IFC-ESUF 19-0015, n= 11, 44-65 mm SL; IFC-ESUF 19-0016, n= 7, 47-59 mm SL), O. theophilii (FFR 15538, n= 14, 38-55 mm SL) and O. eliasi (FFR 1558, n=7, 38-41 mm SL; IFC-ESUF 19-0015, n= 11, 44-65 mm SL; IFC-ESUF 19-0016, n= 7, 47-59 mm SL)). O. eliasin = 25 O. germencicus n = 37 O. theophilii n = 14 Range (mean) SD Range (mean) SD Range (mean) SD Standard length (mm) 39-65 38-55 38-65 In percent of standard length Head length 22./-27.8 (25.2) 12 23.6-25.7 (24.6) 0.7 23.0-27.6 (24.9) lal Body depth at dorsal-fin origin 14.8-22.8 (18.8) ihe 16.9-19.0 (18.1) 0.7 17.2-22.3 (19.2) Led Body width at dorsal-fin origin 10.1-16.8 (13.5) 1.6 11.6-14.3 (12.7) 0.9 10.2-16.6 (13.3) 1s Predorsal length 48.3-55.3 (51.8) 5 46.7-53.8 (51.2) 1.8 39.0-54.5 (51.1) 3.0 Postdorsal length 32.5-39.5 (36.0) Le 32.6-37.1 (35.4) 15 33.2-41.1 (37.6) al Preanal length 70.9-77.3 (74.1) 2.9 74.6-79.5 (76.5) 1.4 70.1-78.6 (74.7) 2.2 Prepelvic length 48.1-56.3 (52.2) Lid 51.6-54.6 (52.6) 1.0 48.6-59.9 (51.6) a Dist. betw. pectoral and pelvic-fin origins 24.1-32.2 (28.2) 2.8 26.7-32.2 (29.2) ey 25.6-33.7 (29.2) 2.2 Dist. between pelvic and anal-fin origins 20.8-27.4 (24.1) 1.4 20.6-27.3 (23.4) 1.7 18.4-25.0 (22.3) 1.8 Depth of caudal peduncle 9.4-13.4 (11.4) 0.1 11.9-14.4 (12.8) Lae. 11.6-13.1 (12.2) 0.4 Length of caudal peduncle 15.9-22.0 (19.0) 15 15.2-18.8 (17.0) 0.7 17.1-21.1 (18.9) 1.0 Dorsal-fin depth 19.4-25.4 (22.5) 1.0 17.6-24.5 (20.9) 1.6 16.0-23.6 (18.9) 1.8 Anal-fin depth 16.0-23.8 (19.9) 253 15.8-20.1 (18.0) 1.2 14.8-21.0 (17.6) 1.6 Pectoral-fin length 19.6-28.6 (24.1) 2.0 20.1-23.7 (21.9) La 16.1-28.6 (23.9) 24 Pelvic-fin length 15.5-23.9 (9.7) 1.8 15.7-19.9 (17.7) 125 15.7-19.5 (17.9) 1.2 Caudal-fin length 20.8-31.8 (26.3) 2.6 22.8-29.2 (25.8) 2.0 20.8-29.0 (26.6) 1.9 Middle lop of caudal-fin length 16.4-23.6 (20.0) 1.8 18.7-22.8 (20.3) le? 18.3-24.4 (20.9) Ly In percent of head length Head depth at eye 34.6-55.8 (47.4) 3:5 33.6-48.6 (42.8) 3.9 34.0-49.3 (42.2) 4.2 Snout length 32.8-49.2 (41.0) 3.8 34.5-44.9 (39.3) 2.6 30.5-46.9 (39.4) 3.6 Eye diameter 12.2-27.9 (20.0) 3.8 16.2-25.5 (19.6) 2.6 14.9-29.9 (19.1) 5.8 Postorbital distance 42.6-54.6 (48.6) 2.6 47.5-63.0 (53.2) Biz 41.0-58.9 (50.8) 3.7 Maximum head width 52.8-66.2 (59.5) 3.6 52.9-64.5 (58.4) Oey 50.4-64.5 (57.1) 3.8 Interorbital width 19.2-31.5 (25.3) 2.9 19.7-28.2 (24.1) 2.6 19.7-27.2 (24.0) 3.8 Length of inner rostral barbel 19.4-41.8 (30.1) ie 16.3-32.3 (24.7) 4.9 17.8-35.6 (25.1) 4.6 Length of outer rostral barbel 25.7-48.1 (36.9) 5.7 26.1-40.2 (31.2) 4.8 23.0-47.2 (33.4) 5.8 Length of maxillary barbel 23.9-59.0 (41.5) ZA 20.8-37.5 (29.6) 4.0 21.9-42.2 (30.9) 5:6 In percent of caudal peduncle length Depth of caudal peduncle 1.3-2.1 (1.7) 1.9 1.2-1.5 12 1.5-1.7 (1.6) 0.7 In percent of body depth at dorsal-fin origin Caudal peduncle depth 52.6-70.0 (61.2) 4.8 In percent of length of caudal-fin length Length of middle caudal-fin lope 65.1-83.0 (70.2) 4.8 53.4-72.7 (63.5) 4.5 63.4-67.9 (75.6) 6.8 73.3-83.1 (78.4) 3.4 69.8-94.4 (79.4) 6.6 Table 3. Pairwise distance values based on cytochrome oxidase sequences of Oxynoemacheilus species. (Intraspecific genetic di- versity 1s shown in gray). 3 | 2 = = ® ‘S = 2) 77) % F 7 = © & c 5 3 & g 2 5 S S S, E 5 © S £ % = _ ® x ~ 8 = © = 5 & = % E S E & eo) ‘ ® < ® © 7) iz E ° - a E S a S 3 ro) ro) o O. kottelati 0.001 O. marmaraensis 0.084 0.002 O. eliasi 0.100 0.108 Hagges O. theophilii 0.106 0.110 0.037 [aaa O. angorae 0.106 0.104 0.040 0.042 °& 0.001 O. fatmae 0.107 0.109 0.035 0.022 0.033 Fae O. mediterraneus 0.100 0.106 0.034 0.036 0.033 0.034 (ame O. nasreddini 0.101 0.102 0.030 0.029 0.030 0.027 #42«®1\10.010 °#£O.001 O. germencicus 0.103 0.105 #£0.041 0.036 0.041 0.038 0.033 0.030 #£0.005 O. anatolicus O12 =F O. angorae HO. eliasi A O. germencicus © O. kottelati * O. marmaraensi 37°30'0"N 38°0'0"N 38°30'0"N 39°0'0"N 39°30'°0"N 40°0'0"N @ Oo. simavicus \® O. theophilii 26°0'0"E 26°30'0"E 27°0'0"E 27°30'0"E 28°0'0"E 28°30'°0"E 29°0'0"E 29°30'0"E 30°0'0"E 30°300"E 31°0'0"E 31°300"E Figure 4. Distribution of Oxynoemacheilus species in Aegean and Marmara Sea basins of Anatolia. tance 20-28% SL; and caudal-fin length 23-29% SL. Based on morphometric data, it is difficult to distinguish these three species (O. germencicus, O. eliasi, and O. theophilii) from each other. This might be due to the high morphological variation within O. germencicus, or it may include the possi- bility of one or more species in the Burytk Menderes River. Comparative materials Oxynoemacheilus marmaraensis, FFR 1511, 12, 46-59 mm SL; Turkiye, Balikesir Province, stream Dursunbey 10 km east of Dursunbey, D. Turan, G. Kalay- ci, and S. Aksu, 22.11.2022, 39°36'32.4"N, 28°45'01.9"E. zse.pensoft.net 490 Turan, D. et al.: A new loach species from Anatolia Oxynoemacheilus kottelati PP085162 100/100 | Oxynoemacheilus kottelati PP085167 Oxynoemacheilus kottelati PP085163 Oxynoemacheilus kottelati PP085166 aes Oxynoemacheilus kottelati PP085165 97/100 Oxynoemacheilus kottelati PP085164 Oxynoemacheilus marmaraensis 0Q657341 Oxynoemacheilus marmaraensis 0Q657340 Oxynoemacheilus marmaraensis 0Q657342 Oxynoemacheilus marmaraensis 0Q657337 Oxynoemacheilus marmaraensis 0Q657339 Oxynoemacheilus marmaraensis 0Q657338 ML/BI -/95 100/100 Oxynoemacheilus simavicus OL855832 Oxynoemacheilus simavicus KJ553724 100/100] Oxynoemacheilus simavicus KJ553970 Oxynoemacheilus simavicus 0Q332835 Oxynoemacheilus simavicus 0Q332832 Oxynoemacheilus simavicus 0Q332833 100/100! Oxynoemacheilus simavicus 0Q332834 97/92 | Oxynoemacheilus eliasi ON123693 99/100 Oxynoemacheilus eliasi ON123694 ie Oxynoemacheilus eliasi ON123681 71/-- Oxynoemacheilus anatolicus ON123692 99/100 || Oxynoemacheilus anatolicus ON123690 95/100 Oxynoemacheilus anatolicus ON123691 Oxynoemacheilus germencicus ON123697 100/100 100/100 Oxynoemacheilus germencicus ON123699 71/799L. Oxynoemacheilus germencicus ON123698 Oxynoemacheilus theophilii OR948618 -/35| Oxynoemacheilus theophilii OR948619 Oxynoemacheilus theophilii KJ554038 Oxynoemacheilus theophilii KJ553731 Oxynoemacheilus theophilii KJ553850 92/100 Oxynoemacheilus theophilii KJ553798 Oxynoemacheilus fatmae OR948615 Oxynoemacheilus fatmae OR948616 100/100 ek Oxynoemacheilus fatmae OR948617 aie Oxynoemacheilus angorae OL855743 eatin Oxynoemacheilus angorae ON123683 Oxynoemacheilus angorae ON123682 Oxynoemacheilus angorae OL855744 Oxynoemacheilus nasreddini MW916396 Oxynoemacheilus nasreddini MW916398 Oxynoemacheilus nasreddini MW916397 Oxynoemacheilus mediterraneus MW916390 Oxynoemacheilus mediterraneus MW916391 Oxynoemacheilus mediterraneus MW916389 98/100 Oxynoemacheilus bureschi KJ553692 Seminemacheilus lendlii MT077008 95/99 100/100 rr 0.02 Figure 5. Maximum likelihood tree based on mitochondrial cytochrome oxidase subunit I (COT; 624 bp) gene sequences of Oxynoe- macheilus spp. Bootstrap values (ML/BI) are shown above or below nodes on the tree if they are 70% or higher. zse.pensoft.net Zoosyst. Evol. 100 (2) 2024, 483-492 Oxynoemacheilus angorae, FFRO1549, 50, 20-59 mm SL; Turkiye, Ankara prov., stream Pecenek, 7 km east of Serefliko¢hisar, D. Turan, C. Kaya, and E. Baycelebi, 01.10.2015, 40°28'15.6"N, 32°39'18.0"E. Oxynoemacheilus — simavicus, | FFRO1505, — 28, 32-56 mm SL; Turkiye, Balikesir prov, stream Sakar at Manyas, 29.08.2014, D. Turan, C. Kaya, and E. Baycele- bi, 40°03'00.0"N, 27°57'43.2"E. Oxynoemacheilus theophilii, FFR 15538, 5, 27-36 mm SL; Turkiye, Izmir prov., Ca8layan Stream, a tributary of Bakircay River 15 km east of Bergama, D. Turan, C. Kaya, and E. Bay¢elebi, 16.07.2018, 39°27'12.2"N, 27°00'30.9"E. Oxynoemacheilus eliasi, FFR 15658, 7, 38-41 mm SL; Turkiye, Izmir prov., inlet of Tahtali reservoir, under Sasal bridge, D. Turan, C. Kaya, and E. Bay¢elebi, 16.07.2018, 38°11'57.56"N, 27°08'09.79"E.—IFC-ESUF 19-0015, 14, 43-66 mm SL; Turkiye, Manisa prov., Derbent Stream, Gediz River, Uluderbent village bridge, Alasehir, S.S. Giclti, and GK. Akyildiz, 28.04.2017, 38°11'3.43"N, 28°32'37.65"E—IFC-ESUF 19-0016, 91, 38-62 mm SL; Turkiye, Manisa prov., Derbent Stream, Gediz River, Uluderbent village bridge, Alasehir, S.S. Guiclt, and G.K. Akyildiz, 28.04.2017, 38°11'3.43"N, 28°32'37.65"E— IFC-ESUF 19-0021, 7, 42-53 mm SL; Turkiye; Man- isa prov., Demirci Stream, Gediz River, Saraycik vil- lage Demirci, F. Kticgtk, S.S. Gul, and G.K. Akyildiz, 01.11.2016, 38°47'48.36"N, 28°30'52.48"E—IFC-ESUF 19-0022, 15, 37-74 mm SL; Turkiye, Manisa prov., Ge- diz River, Derbent bridge, Hacibaba village, F. Kucutk, and S.S. Guclti, 22.06.2012, 39°01'23.50"N, 29°25'02.23"E — IFC-ESUF 19-0011, 5, 41-58 mm SL; Turkiye, Kita- hya prov., Gediz River, Bahceler Creek, Dortdegirmen village bridge, Gediz, F. Kuctik, S.S. Guclt, and GK. Akyildiz, 31.10.2016, 38°58'36.14"N, 29°23'43.66"E— IFC-ESUF 19-0012, 3, 44-48 mm SL; Turktye, Manisa prov., Gediz River, Hacihalliler village, F. Ktictk, S:S. Giclt, and G-K. Akyildiz, 03.11.2016, 38°38'23.92"N, 27°32'37.74"E. —IFC-ESUF 19-0014, 5, 37-55 mm SL; Turkiye, Manisa prov., Gorduk Stream, Gediz River, Zeyt- inbag1 village, Akhisar, F. Kuctk, S.S. Guclt, and G.K. Akyildiz, 02.11.2016, 39°2'55.19"N, 27°55'39.27"E— IFC-ESUF 19-0017, 2, 46-61 mm SL; Turkiye, Kita- hya prov., Gediz River, Bahceler Creek, Dortdegirmen village bridge, Gediz, S.S. Gutc¢li, and GK. Akyildiz, 27.04.2017, 38°58'36.14"N, 29°23'43.66"E—IFC-ES- UF 19-0018, 3, 35-37 mm SL; Turkiye, Manisa prov., Gordtk Stream, Gediz River, Zeytinbag1 village, Akhisar, S.S. Gug¢lt, and G.K. Akyildiz, 27.04.2017, 39°2'55.19"N, 27°55'39.27"E—IFC-ESUF 19-0023, 1, 54 mm SL; Tur- kiye; Manisa prov., Akpinar Spring, Golmarmara Lake, Golmarmara, F. Kuictk, and S.S. Giicli, 21.06.2012, 38°42'04.40"N, 27°58'07.97"E—IFC-ESUF 19-0024, 1, 43 mm SL; Turkiye, Ktitahya prov., Gediz River, Gimiuslt DSI Regl., Gediz, F. Ktigtk, and S.S. Gtiglt, 21.06.2012, 38°58'18.76"N, 29°28'01.56"E—IFC-ESUF 19-0025, 9, 40-50 mm SL; Turkiye, Manisa prov., Gediz River, Yurt- basi bridge, Kula, S.S. Guilt, and H. Giiclt, 12.07.2010, 38°36'16.19"N, 28°48'54.68"E—IFC-ESUF 19-0028, 1, 491 48 mm SL; Turktye, Manisa prov., Demirci Stream, Ge- diz River, Saraycik village, Demirci, S.S. Gii¢lt, and G.K. Akyildiz, 25.04.2017, 38°47'48.36"N, 28°30'52.48"E. Oxynoemacheilus germencicus, FFR 1523, 7, 52- 58 mm SL; Turkiye, Denizli prov., Aksu Stream, Biytk Menderes River, 4 km north of Honaz, D. Turan, C. Kaya, and E. Baycelebi, 19.08.2014, 37°47'21.55"N, 29°15'41.16"E—FFR 1508, 22, 35-65 mm SL; Ttrki- ye, Muégla prov., Cine Stream, Buytik Menderes River, a tributary of Adnan Menderes reservoir 8 km south of Cine, D. Turan, C. Kaya, and E. Bay¢elebi, 25.08.2014, 37°32'34.15"N, 28°03'44.85"E—FFR 1528, 12, 39- 56mm SL; Turkiye, Denizli prov., Sucikan Stream, Biyuk Menderes River, tributary of Lake Isikli 1 km north of Citak, D. Turan, C. Kaya, and E. Baycelebi, 18.08.2014, 38°09'20.15"N, 29°38'16.68"E—FFR 1530, 61, 28-68 mm SL; Turkiye, Usak prov., Banaz River, Buytik Mende- res River, 8 km north of Sivasli, D. Turan, C. Kaya, and E. Baycelebi, 18.08.2014, 38°32'58.72"N, 29°37'12.98"E— FFR 1597, 10, 47-63 mm SL; Turkiye, Aydin prov., Karacasu Stream, Buytik Menderes River, D. Turan, C. Kaya, and E. Baycelebi, 18.08.2014, 37°48'22.96"N, 28°34'49.47" E—IFC-ESUF 19-0006, 10, 27-60 mm SL; Turkiye, Denizli prov., Cindere reservoir, Buyuk Mende- res River, Guney, F. Ktictik, and S.S. Gigli, 15.05.2017, 38°06'45.47"N, 29°01'47.65"E.—IFC-ESUF 19-0007, 14, 33-56 mm SL; Turkiye, Denizli prov., Biryuk Mende- res River, Citak Bridge, Civril, O. Cetinkaya, 30.10.2017, 38°09'23.69"N, 29°38'24.29"E.—IFC-ESUF 19-0009, 9, 54-64 mm SL; Turkiye, Afyonkarahisar prov., Karadirek Stream, Bttyuk Menderes River, Karadirek, F. Kuguk, and S.S.Guclt, 29.10.2017, 38°33'08.29"N, 30°11'45.52"E— IFC-ESUF 19-0026, 11, 52-61 mm SL; Turkiye, Aydin prov., Dandalas Stream, Buytik Menderes River, Karaca- su, S.S. Guilt, and H. Gti¢lt’ 14.07.2010, 37°45'26.00"N, 28°36'58.53"E—IFC-ESUF 19-0010, 7, 36-67 mm SL; Turkiye, Denizli prov., Isikli Lake canal, Biryuk Menderes River, Civril, O. Cetinkaya, 31.08.2017, 38°16'22.89"N, 29°54'23.64"E—IFC-ESUF 19-0019, 6, 51-65 mm SL; Turkiye, Aydin prov., Sirindere Stream, Biuyutk Menderes River, Incirliova, F. Ktictk, and S.S. Gticlti, 22.07.2019, 37°55'41.87"N, 27°46'39.37"E.—IFC-ESUF 19-0020, 7, 46-61 mm SL; Turkiye, Usak prov., Banaz Stream, Buytik Menderes River, Ulubey, F. Ktictk, and S.S. Giucli, 27.07.2019, 38°31'48.46"N, 29°36'43.56"E.—IFC-ES- UF 19-0027, 4, 38-40 mm SL; Turkiye, Denizli prov., Buytk Menderes River, Yenicekent DSI Regl., Saraykoy, F. Ktictk, 04.06.1998, 38°02'15.45"N, 28°57'47.50"E. Acknowledgements This study was supported by the Scientific Research Proj- ect Coordination Unit of Recep Tayyip Erdogan Univer- sity (Project No. FBA-2022-1419). We thank Yasemen SENTURK (Rize) for taking photographs of the mouth shapes of the specimens. We also thank the subject and copy editors of the article. zse.pensoft.net 492 References Bektas Y, Aksu I, Kaya C, Baycelebi E, Turan D (2022) DNA barcoding and species delimitation of the genus Oxynoemacheilus (Teleostei, Nemacheilidae) in Anatolia. Journal of Fish Biology 101(3): 505— 514. https://doi.org/10.1111/jfb.15114 Cigek E, Sungur S, Fricke R, Seger B (2023) Freshwater lampreys and fishes of Turkiye; an annotated checklist. Turkish Journal of Zoolo- gy 47(6): 324-468. https://doi.org/10.55730/1300-0179.3147 Erk’akan F (2012) Two new Oxynoemacheilus (Teleostei, Nemacheil- idae) species from western Turkey. Research Journal of Biological Sciences 7(2): 97-101. https://doi.org/10.3923/rjbsci.2012.97.101 Erk’akan F, Nalbant TT, Ozeren SC (2007) Seven new species of Bar- batula, three new species of Schistura and a new species of Semine- macheilus (Ostariophysi, Balitoridae, Nemacheilinae) from Turkey. Journal of Fisheries International 2: 69-85. Freyhof J (2016) Oxynoemacheilus karunensis, a new species from the Persian Gulf basin Teleostei. Nemacheilidae. Zootaxa 4175(1): 94-100. https://doi.org/10.11646/zootaxa.4175.1.9 Freyhof J, Abdullah YS (2017) Two new species of Oxynoemacheilus from the Tigris drainage in Iraqi Kurdistan (Teleostei, Nemacheilidae). Zootaxa 4238(1): 73-87. https://doi.org/10.11646/zootaxa.4238.1.5 Freyhof J, OzuluS M (2017) Oxynoemacheilus hazarensis, a new spe- cies of from Lake Hazar in Turkey with remarks on O. euphraticus (Teleostei, Nemacheilidae). Zootaxa 4247(4): 378-390. https://doi. org/10.11646/zootaxa.4247.4.2 Freyhof J, Erk’akan F, Ozeren C, Perdices AJ (2011) An overview of the western Palaearctic loach genus Oxynoemacheilus (Teleostei, Nemache- ilidae). Ichthyological Exploration of Freshwaters 22: 301-312. Freyhof J, Kaya C, Turan D (2017) Oxynoemacheilus kentritesensis, a new species from the upper Tigris drainage in Turkey with remarks on the distribution of O. frenatus (Teleostei, Nemacheilidae). Zoo- taxa 4258(6): 551-560. https://doi.org/10.11646/zootaxa.4258.6.4 Fujisawa T, Barraclough TG (2013) Delimiting species using single-lo- cus data and the generalized mixed yule coalescent approach: A revised method and evaluation on simulated data sets. Systematic Biology 62: 707—724. https://doi.org/10.1093/sysbio/syt033 Geiger MF, Herder F, Monaghan MT, Almada V, Barbieri R, Bariche M, Berrebi P, Bohlen J, Casal-Lopez M, Delmastro GB, Denys GPJJ, Dettai A, Doadrio I, Kalogianni E, Karst H, Kottelat M, Kovaci¢ M, Laporte M, Lorenzoni M, Marti¢ Z, Ozulug M, Perdices A, Perea S, Persat H, Porcelotti S, Puzzi C, Robalo J, Sanda R, Schneider M, Slechtova V, Stoumboudi M, Walter S, Freyhof J (2014) Spatial het- erogeneity in the mediterranean biodiversity hotspot affects barcod- ing accuracy of its freshwater fishes. Molecular Ecology Resources 14: 1210-1221. https://doi.org/10.1111/1755-0998.12257 Hall TA (1999) BioEdit a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98. Kamangar BB, Prokofiev AM, Ghaderi E, Nalbant TT (2014) Stone loaches of Choman River system, Kurdistan, Iran (Teleostei, Cy- priniformes, Nemacheilidae). Zootaxa 3755(1): 33-61. https://doi. org/10.11646/4364 Kottelat M (2012) Conspectus cobitidum: An inventory of the loach- es of the world (Teleostei, Cypriniformes, Cobitoide1). The Raffles Bulletin of Zoology 26(Supplement): 1-199. Kottelat M, Freyhof J (2007) Handbook of European Freshwater Fishes: Kottelat, Cornol and Freyhof, Berlin, [xiv +] 646 pp. zse.pensoft.net Turan, D. et al.: A new loach species from Anatolia Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547-1549. https://doi.org/10.1093/molbev/msy096 Posada D (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25(7): 1253-1256. https://doi.org/10.1093/ molbev/msn083 Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21(8): 1864-1877. https://doi.org/10.1111/ j.1365-294X.2011.05239.x Puillandre N, Brouillet S, Achaz G (2021) ASAP: Assemble species by automatic partitioning. Molecular Ecology Resources 21(2): 609— 620. https://doi.org/10.1111/1755-0998 13281 Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572-1574. https://doi.org/10.1093/bioinformatics/btg 180 Sayyadzadeh G, Eagderi S, Esmaeili HR (2016) A new loach of the genus Oxynoemacheilus from the Tigris River drainage and its phylogenetic relationships among the nemacheilid fishes (Tele- ostei1, Nemacheilidae) in the Middle East based on mtDNA COI sequences. Iranian Journal of Ichthyology 3: 236-250. Stoumboudi MT, Kottelat M, Barbieri R (2006) The fishes of the in- land waters of Lesbos Island, Greece. Ichthyological Exploration of Freshwaters 17(2): 129-146. Tamura K, Nei M (1993) Estimation of the number of nucleotide sub- stitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10(3): 512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023 Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight ma- trix choice. Nucleic Acids Research 22(22): 4673-4680. https://doi. org/10.1093/nar/22.22.4673 Turan D, Kaya C, Kalayci G, Baycelebi E, Aksu I (2019) Oxynoemachei- lus cemali, a new species of stone loach (Teleostei, Nemacheilidae) from the Coruh River drainage. Journal of Fish Biology 94(3): 458— 468. https://doi.org/10.1111/jfb.13909 Turan D, Aksu S, Kalayci1 G (2023a) Two new Oxynoemacheilus species in western Anatolia (Teleostei, Nemacheilidae). Zoosys- tematics and Evolution 99(2): 439-455. https://doi.org/10.3897/ 78e:99.102575 Turan D, Bay¢elebi E, Kalayci G (2023b) Oxynoemacheilus marmar- aensis, a new species from the Susurluk River, Turkiye (Teleostei, Nemacheilidae). Journal of Fish Biology 103(5): 1106-1112. https:// doi.org/10.1111/jfb.15506 Turan D, Aksu S, Gticlt'SS, Kalayc1 G(2024) [in press] Oxynoemacheilus fatmae, a new species from the Guzelhisar Stream in Aegean Sea basin, Turkiye (Telostei: Nemacheilidae). Journal of Fish Biology. https://doi.org/10.1111/jfb.15779 Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 360(1462): 1847-1857. https://doi.org/10.1098/rstb.2005.1716 YosSurtcuoslu B, Kaya C, Freyhof J (2022) Revision of the Oxynoe- macheilus angorae group with the description of two new species (Teleostei, Nemacheilidae). Zootaxa 5133(4): 451-485. https://doi. org/10.11646/zootaxa.5133.4.1