Apeer-reviewed open-access journal BioRisk 19: 1-24 (2023) yas : doi: 10.3897/biorisk.19.96250 RESEARCH ARTICLE & B lO R IS k https://biorisk.pensoft.net Potential risk resulting from the influence of static magnetic field upon living organisms. Numerically simulated effects of the static magnetic field upon fatty acids and their glycerides Wojciech Ciesielski', Henryk Kotoczek’, Zdzistaw Oszczeda?, Jacek A. Soroka‘, Piotr Tomasik? I Institute of Chemistry, Jan Dtugosz University, 42 201 Czestochowa, Poland 2 Nantes Nanotechnological Systems, 59 700 Bolestawiec, Poland 3 Institute of Chemistry and Inorganic Technology, Krakow University of Technology, Krakow, Poland 4 Scientific Society of Szczecin, 71-481 Szczecin, Poland Corresponding author: Wojciech Ciesielski (w.ciesielski@interia.pl) Academic editor: Josef Settele | Received 12 October 2022 | Accepted 30 January 2023 | Published 6 March 2023 Citation: Ciesielski W, Koloczek H, Oszczeda Z, Soroka JA, Tomasik P (2023) Potential risk resulting from the influence of static magnetic field upon living organisms. Numerically simulated effects of the static magnetic field upon fatty acids and their glycerides. BioRisk 19: 1-24. https://doi.org/10.3897/biorisk.19.96250 Abstract Background: We attempt to recognise the effects of static magnetic field (SMF) of varying flux density on flora and fauna. For this purpose, the influence of static magnetic field is studied for molecules of octade- canoic (stearic), cis-octadec-9-enoic (oleic), cis,cis-octadec-9,12-dienoic (linoleic), all cis-octadec-6,9.12- trienoic (linolenic), trans-octadec-9-enoic — (elaidic), cis-octadec-11-enoic (vaccenic) and all trans-octa- dec-6,9, 12-trienoic (trans-linolenic) acids as well as 1- and 2-caproyl monoglycerides, 1,2- and 1,3-caproyl diglycerides and 1,2,3-caproyl triglyceride. In such a manner we attempt to develop an understanding of the interactions of living cells with SMF on a molecular level. Methods: Computations of the effect of real SMF 0.0, 0.1, 1, 10 and 100 AMFU (Arbitrary Magnetic Field Unit; here LAMFU > 1000 T) flux density were performed in silico (computer vacuum), involving advanced computational methods. Results: SMF polarises molecules depending on applied flux density It neither ionises nor breaks valence bonds at 0.1 and 1 AMFU. In some molecules under consideration flux density of 10 and 1OOAMFU some C-H and C-C bonds were broken. Some irregularities were observed in the changes of positive and negative charge densities and bond lengths against increasing flux density. They provide evidence that Copyright Wojciech Ciesielski et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Wojciech Ciesielski et al. / BioRisk 19: 1-24 (2023) molecules slightly change their initially fixed positions with respect to the force lines of the magnetic field. The length of some bonds and bond angles change with an increase in the applied flux density providing, in some cases, polar interactions between atoms through space. Conclusions: SMF destabilizes lipid acids and caproyl glycerides irregularly against increasing flux den- sity. That irregularity results from the ability of those molecules to twist out of the initially established SMF plain and squeeze molecules around some bonds. In some molecules SMF flux density of 10 AMFU and above breaks some valence bonds and only in case of elaidic acid the trans-cis conversion is observed. Depending on the structure and applied flux density SMF either stimulates or inhibits metabolic processes of the lipids under study. Keywords di-acyl glycerides, elaidic acid, linoleic acid, linolenic acid, mono-acyl glycerides oleic acid, stearic acid, trans-linolenic acid, tri-acyl glycerides, vaccenic acid Introduction Environmental pollution with magnetic fields (Hamza et al. 2002; Rankovic and Radulovic 2009; Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States 2013; Bao and Guo 2021; Tang et al. 2021) evokes a concern about its effect upon organisms of flora and fauna (Steiner and Ulrich 1989; Kohno et al. 2000; Woodward 2002; Andreini et al. 2008; Rittie and Perbal 2008; Buchachenko 2009; Buchachenko et al. 2012; Bu- chachenko 2014; Jaworska et al. 2014; Buchachenko 2016; Jaworska et al. 2016; Jaworska et al. 2017; Letuta and Berdinskiy 2017; Xu 2018; Beretta et al. 2019). This problem was extensively addressed in our former papers. In those papers the effect of static magnetic field (SMF) of 0 to 100T AMFU (Arbitrary Magnetic Field Unit; here LAMFU > 1000 T) upon simple inorganic molecules (Ciesiel- ski et al. 2021) alkanols (Ciesielski et al. 2022a), carbohydrates (Ciesielski et al. 2022b), porphine (Ciesielski et al. 2022c) and metalloporphyrines (Ciesielski et al. 2022d) was simulated involving in silico (computer vacuum) advanced compu- tational methods. This paper presents results of such computations for selected higher lipid acids be- longing to the group of derived lipids and mono-, di- and tri-glycerides constituting a group of simple lipids (Heinz 1996; Berg et al. 2019; Coones et al. 2021). ‘These lipids, in general, co-constitute biological membranes and triglycerides, located in adipose tissue, play a role of a major form of energy storage of animals and plants (Brasaemle 2007; Sul 2017; Berg at al. 2019) and cooperate in elasticity of skin. Focus on lipids can be rationalized also for their role in the consumption, diet and functional properties of foodstuffs (see, for instance, Sena et al. 2022; Bharti et al. 2023). Recently, the role of static magnetic field (SMF) in building suitable functional properties of foodstuff attracted considerable attention (Arteaga Mifano et al. 2020; Otero and Pozo 2022). Also a specific use of magnetic field in molecular imaging and diagnosis could be mentioned. Magnetic nanomaterial additives are used in this case (Yao and Xu 2014). The influence of SMF on living organisms. Fatty acids and glycerides 3 Numerical computations Computations of the effect of real SMF 0.0, 0.1, 1, 10 and 100 AMFU (Arbitrary Magnetic Field Unit; here LAMFU > 1000 T) flux density were performed in silico (computer vacuum), involving advanced computational methods. Molecular structures were drawn using the Fujitsu SCIGRESS 2.0 software (Froi- mowitz 1993; Marchand et al. 2014). Their principal symmetry axes were orientated along the x-axis of the Cartesian system. Molecules were situated inside a three-axial ellipsoid. The longest axis of that ellipsoid was accepted as the x-axis and the shortest quasi-perpendicular axis considered as the z-axis. The magnetic field was fixed in the same direction, along the x-axis with the south pole from the left side, marked in pic- tures with red line. Orientation of the molecules along the x-axis is presented in Fig. 1. 52 5148 47 44 #43 40 39 36 35 32 3128 27 24 5 Re SNL NY NT ON 7 27 7 31 oe SpA ane led / ak rs \ \ \\ _— 8 — 36 21 25 | 29 | 33 / \ 38 26 30 / om —————— ~ 52 51 47 43 “| N ae | \ 48\ 44 \ 44 39 of Lelie y Tedd eB ae \ 54—— 20 M4 {8-7} ae \ YF 50 \ 46 \. 42 43 42 47 46 50°! 1414 7. Oe eet aie a ae 31 x ee 27 a "SS Cy Gee Acker 50 eC 52 «40 44 44. 45 48 gg 398 cis,cis--Octadec-9,12-dienoic (linoleic) acid Figure I. Numbering atoms in the molecules of lipid fatty acid and caproyl glycerides without following the geometry. 4 Wojciech Ciesielski et al. / BioRisk 19: 1-24 (2023) 39 on oe BO Ne 7 \4 42 > a og Ci ee yas ve Be eS. see / is 48 22 37 4377 MS Pgs 2 Pe 50 / 36 35 49 % a Pe 17. ar / 44 Pian 10. 27 16 AWA ot SS 45 One ed [ss 34 39 38 24 26 peg We wie ra ee yA een a, 4 15 29 ee es ae Pin ee 2 eul* 50. /] 36 35 49 XY 1—20. \ 41 wos re 27 16 ne NL eS 45 ST 32 et | 33 34 all trans-Octadec-6,9,12-trienoic (¢vans-linolenic) acid Figure |. Continued. The influence of SMF on living organisms. Fatty acids and glycerides 1,2,3-Tricaproyl glyceride Figure |. Continued. 6 Wojciech Ciesielski et al. / BioRisk 19: 1-24 (2023) Subsequently, involving Gaussian 0.9 software equipped with the 6-31G** basis (Frisch et al. 2016), the molecules were optimised and all values of bond length, dipole mo- ment, heath of formation, bond energy and total energy for systems were computed. In the consecutive steps, the influence of the static magnetic field (SMF) upon opti- mised molecules was computed with Amsterdam Modelling Suite software (Farberovich and Mazalova 2016; Charistos and Mufoz-Castro 2019) and the NR_LDOTB (non- relativistically orbital momentum L-dot-B) method (Glendening et al. 1987; Carpenter and Weinhold 1988). Following that step, values of bond length, dipole moment, heath of formation equal to the energy of dissociation and charges at the atoms were calculated using Gaussian 0.9 software equipped with the 6-31G** basis (Marchand et al. 2014). Numbering atoms in particular molecules under consideration are presented in Fig.I. Results Presentation of effect of SMF of flux density from 0 to 100 AMFU upon heat of formation and dipole moment of selected lipid acids (Table 1) and caproyl glycerides (Table 2). Tables 3-6 collect results of SMF effect upon charge density solely on at- oms directly participating in biological activity of considered lipids and bond lengths between those atoms. In case of SMF of flux density generating radical scission of the Table I. Effect of SMF of increasing flux density upon heat of formation and dipole moment of lipid acids. Lipid acids Heat of formation [kJ-mol’] at SMF flux Dipole moment [D] at SMF flux density density [AMFU] [AMFU] 0 0.1 1.0 10 100° 0 0.1 1.0 10 100° Stearic -560 -531 -511 -492 -416(25.7) 3.42 3.56 3.84 4.16 5.32(35.7) Oleic -676 -654 -621 -594 -542(19.8) 1.88 1992. 2.06 2.63 3.01(34.2) Linoleic 565 -510 -457 -401 -326(42.3) 2.39 2.45 2.63 2.95 3.06(21.3) Linolenic -485 -423 -404 -364 -318(34.5) 1.76 1.86 2.18 2.63 3.28(43.3) Elaidic -642 -612 -586 -527 -461(28.2) 4.51 4.68 4.77 5.16 6.24(27.7) Vaccenic -672 -653 -591 -521 -423(27.0) 1.88 1.96 2.29 2.84 3.67(48.7) trans-Linolenic -421 -401 -372 -341 -216(48.7) 1.66 1.74 1296 2.69 ‘3.15(473) *The final increase (in %) in the reported value at applied SMF of 100 AMFU is given in parentheses. Table 2. Effect of SMF of increasing flux density upon heat of formation and dipole moment of caproyl glycerides. Caproyl Heat of formation [kJ-mol"] at SMF flux Dipole moment [D] at SMF flux density glyceride density [AMFU] [AMFU] 0 0.1 1.0 10 100? 0 0.1 1.0 10 100? 1-Caproy] S192) "182." "+168" 136; 10427)" 3:43 93:53." 398.7 4.65 6:52°(90:0) 2-Caproyl -187 = -172 -151 -123 -96 (48.7) 1.41 1.45 1.76 3.12 4.96 (71.6) 1,2-Dicaproyl -263 -252 -237 -196 -118(55.1) 4.06 4.38 4.98 5.31 7.15 (42.1) 1,3-Dicaproyl -213 -207 -195 -171 -138 (35.3) 1.42 1.52 1.95 2.69 3.99 (64.7) 1,2,3-Tricaproyl -384 -363 -335 -239 -156 (58.3) 2.38 2.48 295 3.690 721.067.) *The final increase (in %) in the reported value at applied SMF of 100 AMFU is given in parentheses. . Fatty acids and glycerides Iving organisms The influence of SMF on | Zel LOI- OFT POT- eI EIT LOT- GOT OTT’ IZT- 9S€- S87 O6E- IEE I vel COC- CFT O8T- PCI BIT T9T- STI’ 8Il’ 9ZT- SSe- c87 CLE- STE 10 I@I’ €91- 771° SST 660° 860° IST- ZOT’ ZOT €@7- LL7- LvEe TEE- 9ET 0 ZVH SIO= 8¥YH ZLIO= €¥H PH FIDO OSH 6YH 8ID 7O= O@D= TO FSH poe (OIpreya) — s1ous-G-dapepg sun 9CT- VIC y60° Eyl OOT OIT- O¢c- Or COL’ SC «tl IZT- «CCT O99T- «(O07 SLT «67 ZST- «Cet 68hT- «66IT 6SZT- «SOT? 6€60° 7ST TOT’ ZIT’ CEl- 8I¥- S87 687- 897 I 060° 9I@- @7T ¢9T- LIT T9T- Sl’ @8I- tcl €9T- CCI PSt- LZel’ GZTI- OTT €60° GFI- 760 CIT GIT- yOS- 79t GOT- TOE 10 8Z0 SOc I@I YOT- 71 O9T- LIT 6ST- ZIT O9T- €7I’ FST- CCI G9T- 860° 060° SST- EIT OIL H9T- 9FE- TIE E€IE- 6€7 0 6€H CIO= ZEH TID= @YH FYID= 87H 8ID= 67H GID= SPH OID= IVH €1ID= CEH IEH 8) SEH YEH OTD TO= O@D= TO OSH ploe (Olusjouly) S1ouaTII-Z [°G*9-9apeIyaa-s29 1]V €Ol’ ¢€c- LOT GOI- 8€0° €60° COI’ I9¥- SHI HCI €6I- HST’ 8ST’ OIT- COE- HET COE 09T OOT €9T° 109 801° 760° cet L¥O- 9L0° LS¥- GFT BCI’ OFT- OLT’ ELI’ OSt- LEE- CFC OTE- LSe Ol 160° O8I- €80° G6ZI- 090° 8S0- [80° FIZ- 971° EOI’ SOT FCT YET 86r- T67- HHS OLT- HT I Z60° I6I- 80° 8IT- 810° SEO- GIT FOT- OST’ TZI° €8I- S60° 960° O@LZ- I67- 662 97Z- 88T 10 860° O61 480° 8ZI- 700’ 9YO- TET €17- EST @7I LOT- €80° ZZL0° TL8- I¥7- 976 E6I- SFT 0 IH YO = €TH €D= OTH 10= LEH 97DO= €VH CYH O€D TVH OPH 67D SEO= 8BTD= YEO TSH ploe (Sfefouly) stoustp-Z | *6-9apeI9_-s19 ‘529 960° 7cOT- €IT 77 cet- ZT St L97- 000° ZS0° OOT Z60. 991 OST’ 8ZI- OTT’ GOT PPT- Zyl ¢€IT CIT- Loe- 897 90F- sce Ol TIT’ CST O€T GZT- €0T’ 960° SST- 87I OT Tel- ¢ee- Loc LLE- OL7 I OTT’ SST S7tI° 9ZT- POT €60° 9ST €cI LOT’ OFI- OFE- SOE 99E- 69T 10 CII’ 6ST- ZIT F9T- €OI° 680° 8SI- 680° SOIT 89I- €¥E- STE OEE- LHe 0 CTH TD 87H 67H FO OFH TEH SD LEH 8) 8E€H 6O= 6EH OLD= ISH OSH 91D €SH CSH LID G6IO= 8ID= O07O FSH Pe (laJO) D10us-G-JapeI9C_)-519 L00° S¥E- OSO- S7O- GOT TZ@- 8Il yet TLe7- OO YOO’ S6I- IZ0- 970 TST cSt- 60° 760° ZLSc- Ol €Vl GOL G6YI- SET OFT’ €PI- StH- 6S7 S8E- Soe I S60° S60" €ST- O7I’ OCT’ CST- 79S- 687 O0E- THe 10 Z60° Z60° 99T- 7@?7I ?@7T ISI- €9S- L870 T67- 9ET 0 OTH 1D €CH PTH CO OLD TYH @YH TID ISH CSH 9ID FSH €SH LID 6TO= 81ID= SSO 8SH poe (olsva}s) STouKDapLIGC) [AAW] Asusp xn FS ye swsoye sepnonsed uo [‘n-e] Aysusp o3sey) AWS ‘sploe pidiy jo suroye Jepnonsed paroajas uo Aususp a3seyD *¢ aIqeL 1-24 (2023) Wojciech Ciesielski et al. / BioRisk 19 Z10° 800° ‘TOT €80° €OI- OOT 9cl 8ST ZIT OST- €7I L9T- LET PET~ GPT’ 991 GFT’ O8T- CIT’ 90OT OST- 8€T° GET CST- €1h- LOE’ SHE- LIT OI SGU 6ST" She ZSl~ “Ser 640 26 6b PoE’ -ZLh> PS T6b= GOT” «TOE eS Po eel Feb SPs. SZe~ 218 2oe OFC I TCI’ COI OIL COT- BIT Z8T- Fel TOT CYT’ O1@- CHI’ OOC- OT’ ¢€60° FLT- ScI° OCT OLT- CSt- SPE B8IP- FOC 10 yer ¢9I- LIT 99T- OIL c9T- LIT OST OTL’ O9T- O@T’ S9T- OT OO" FHST- EIT SIT SOT- 9FE- ITE’ STE- CFT 0 OPH” GEH tl. 20H) Toe eH FlO> 8PH. Slo -6PH 61> Peo “SID SPH SIO> TEA: £lo= "ce? “Ite 8D. - SEH “SEH. OTD” ch OLTT OOT OOTT €SeT SOTT 9OTT CITT ZIT CELT 7 LZZST 6ITT OTT 61ST GOTT OTT @8el ThPl I87T 6€6'0 Or ZOOT Zee tT COLT COT ISO. orl y9OT ZEOT CENT BOTT LITT 9¢ST OTT FOTT SOVT SrET LZYI 0260 I Z60°'T 9ZE'T OOTT 8S0'T 660°T O97 T yOOT 890T G68ZT STITT SOTT €7ST yOTT yOrT O67T G77I TIST 4860 10 ZSOT IPET 8801 6801 660'T T0S'T Z801 Z80T Ive LOOT Z60T 8751 9601 960°'T 80ST 77Z7I 8SEI 1860 0 ZH IID @¥H 87H 6FH 81D ZL¥YH SPH IPH 9TID CEH TEH 8) SEH 9€H_ OID cO 0c TO ID =¥ID “PID “81D 61D -6TID) «6-ZID) «6-9TD. EID ETD 8D 8D OTD OIDs OIDs 07D =07D—i IOs -0SH ploe (oluajoul]-sumz) N1OUSTII-Z [‘G*9-9apeIOC-SUBAT 7D CELT TEVT 9STT S007 L8V'T OOT 97 T SST T CLOT €8y'1 87TH SyTT 8ITl 6F7T 8ZVT ycCTI LOT O9ET Or LITT O€TT 890'T 606°T eset OCT Z8Il sil €8yl OITT Sse 8szrt I TCL T = S6tT 9Z0'T 07ST T9O€T €ITT OTT CSTT 88h 1 9071 PLE l 790°T 10 90T'T 80I'T 880T Teel ceel 8801 CITT E€IIl €6Vl COTT TC9IET L860 0 6TH O€H 87H CEH LB) SCH 6O€H LID S¥H 9FH LPH 6FH- JID cO 07D TO 2, 20" “360 = TR GO SOL CR Se. Tole POT eee SGI ROG" Al Se PE ploe (oruas0RA) STOUD- | [-D9peINOC SUM €tHVT LeET Boel 66ST F7OT B8IOT LOOT GOT CCST OWT 67ST CELT I 6ShT L¥ET OLET STITT 87OT LIDT 8791 LET 67ST ZOVT GIST S09'T 10 8801 880T Seet GOTT GOTT EST EIT OITT 8ST Zot o9¢1t 2260 0 4YH_-—- 8VH- (90's EPH PVH OPTIDCOOSH OPH BID TO-—COOWD—C*STON “AIO. -ZID. ZITO. PID TID OID 81D -8TD 07S -07D——C TOs “SH poe OIpreya) — 10us-G-dapeIincg, sun poe (o1s¥a}s) sFoURDapEIDGC) [naWv]) Aysusp xny AWS 3 [y] syy8u2q puog uroy — wory AWS ig . Fatty acids and glycerides Iving organisms The influence of SMF on | SST’ SPT’) LZLT) (9H SOOTE” EBT - «CLIT SCOTT” = 800 «=~O7T’ SO SZT’ 8ST- ~68E- 067 OST SOT’ 8ST’ 6S0- S7I’ 6€0 I197- TI¥- STE STE OTT €1t- 0OI IST’ SI’ YI? TI¥ OE TL7- 80T 260° F8O- 8IT Ec’ IST- LZe- 68% S7- COT EST ELO- O7T 190 697- O6E- 88E BEE LPT LHT- Ol 8ST 8yI 8It- TIh sve B8Ec- FIT LOT 77O- Sel’ T7l ZSI- €8€- 680 GFT- FIT CST’ LL0- 87I 170 T¥t- 66E- C7E C7E HET OIT~ I Sel’ Set LSI- €1h €8, ST@- CCl OTT €70- OCI OCI’ GyI- S9E- E8t CHe- TIT LST’ 000° S7I’ O€O0 C@77- GLE- T6t T6e SZI° IST~ 10 OcI’ OcI’ CST- Se- 6c Te7- LIT €Ol ¢€tO- GIT SII’ E€SI- HSE- S8T CHI- CIT Sl’ €ZL0- CCI 870 L77T- G6SE- SET Soc I7T IST- 0 TkH. SEH. “FC 9CD $C -GS@. GSH ISH™ 860. SSH -¥SH! £7) SyO- FeO) 260, 9SH FOH "09D- £9H- 8ED..610 40° 99D “4IH..9TH $9 aprao4]8 jAordeony] -¢°Z‘] LEIS “EC lin HOP? GLE OCG. Z6C~ BST SGT S80" SSO" COOP FST” “GST 8ST SPO GEO) ZBEr DET ORE’ Boles OSE - bo y= OO! €SIl° Vel POL- 88h- CTBT T87- 80° CEI 9EO- BI? HyE- THT’ L90° LST’ 797- TO0O- ESe- HLT- LEE 671 SPI PET- Ol 87Il° ¥7l 6ZI- SOW- 6OE O9T- SIT €@I° OFO- 677 97E- STITT CLO" 9ET LO7- TEO- CHE- HHT- C6€E€ B8TI OFT FHZI- I Tel’ PCI 8ST- S8h- S87 TEt- 880° Soe “6SO- €I7 ITE- 680° SPO €OT Z7I FEO- HS7T- TEE- COE OTT ETI SST- 10 Tcl’ O¢@I’ CST See- 687 CHT- 680° GIT 790- LOT STE- 760” EO OTT SOT €10° 677- €9€- 887 LIT OCI CST- 0 tI” 9TH” S$) £0. 99D. 6IO- €FH “CyH Gf" SPH: GYQ 7H OVO. SPH ShH yO 0EO~ 9CO" SCD ~9EH SEH ye apuao4qs [Aordeaiq-¢* | ZeL 6€T OLZT- 6ZE- S6@ 6Z7- FHT COT’ 9S0- 667 IZE- 6Z0° 870 970- 960° ITT S¥7- L8E- Sel CEI CEI SOT- 001 6Il cl OLZT- Lee- 60E B8L7- G67T 760 L90- 97 9O8E- BsO E€EO ETO- LOT 090° T6@- O€E- TCI STI’ STI 7@8I- Ol Cel” “OC £81 TOR 88¢ yee" TOT COLO". 660) OFc™ o0ZE > *eC0'=-€c0") -£00=— SIT SPO. Gee=76G> .OFT Gch, 62I" “89 I 8c’ €cI’ LST- 8T¢e- 90¢€° L6c- GET 8€0 S90 Esc HSEe- TZ0° GPO LOO- FCI HHO 9ET- HLE- LT BCI B8cl IZI- 10 Ici’ 8Il’ 7@ST- €Se- 06¢ €¥e- FOO OST’ IZ0- SOc cEee- O40 $80 900- FCI 670° OT7- IS€- 687 87I T7I CST- 0 9Hs StH. OD 9CO SCOI" SEO" LPH “OVH TyO" SPH CeO. F¥H SPH: GED. -SyH. OF. GIO .40 (992 ZIM? DIM SD aprao4j8 JAordes1q-Z'T PUGS GCE 260" ~ e505 SENG = GOC. MOSSE’ ESCO: Soh ee EOE SCH me TSCe BAe FEC OLE OC Gel OO! CIC” RS 980" a 20908 FIN) G0e “Coe CL SL Perea tel. cIcO0 Sie, 8K sOLC. SCh* ROE KES er Ol OI? SsiIe- 60° 160° 900- €Ze G6ZLE- CHO HCI C@80- TIT’ SSO cHe- Lye- CIE OIL FIT 99T- I €t@ TI€- OL0 870° FOO- 78E 8cEe- ¢€S0° ¢€80° 400° TEI’ 960° ST@- €hy- O6t TET CEL L¥T- 10 TI? 61€- 080° 8S0° 800- ZZ7 OSe- 160° 170° Ip0- GIT L¥O 9¢7- GLE- TOE BIT OCI Sst- 0 WH sO ZH 9H 10 £IH Z@IO OIH 6H €) 8H W@W FO O%O GID O€H 67H 81D apuaodys [Aordey-7 coe = TOE ~TLO’ —LL0° —€00° = tLZ@— S9E™- = £90" FEO" 8Z0’s«OLO" ETO «=L87- ~OGE- O87 TOT SHI SET~ OO! yyc =L8E- 790° 890° €7tO SHC E8E- SLO’ S90" 680° 080° I€0- CS7- Hey- Lee O8T BST €Et7- Ol S0¢€ 91¢r S90" ZZ0 900" =STO™.'¢C> “2807 “9¥0. P80" B80" “250° “eee “Ter ees OLT e291 Boer I GUC OTE 95.0. £Z0° SOOT PIC ale C60 S08 GEL ALOS ERGs BEEPS ec O0C* SCI OF Ty LE b= 10 yor. ¢ce- 990° S20" 000° CIt G6I¢- 60 OFO0 860° LOT ¥90- 8hc- HSE- 6c ICI’ Itt ?St- 0 €TH 90 8H ZH 10 TH SO 6H 7% O1IH IIH £€) FO O0CO GID O€H 67H 8ID aprsa04]3 jAordey-] [NAW] Aysuap xn AWS 7 swsoye sepnonsed vo [‘n-e] Aysusp o3seyy AWS ‘sopraodys [Aordeor pur -Ip ‘-ouour Jo swore paidayas uO AlIsuap d9IeYD *g IGeL 6yST LZ7ZT €OTT 80ST I79T 8981 8971 I60'T 807T 897T TOTTI 9IST 8071 8071 ZPTT 2097 8ZPVT OI8T Ty? l Loy ZeTT Oe OOT €eSl €€LT SSTT 87ST THVT GEST LZSPT SETT ZSTT CIVT 6601 T9FVT OS7T OLYT SETI 8PYT GCEET COLT SOIT IST SET T OTT Or OZYT €ZTT LTT 987T 8Z7T STE T 80ST SETT OTTT COST TOLL 8071 O87T ZOST SSTT OSET ZOTIT TEZT CSTT PPYT OCIT OFI'T I YOST OOTI SITT 98F1 T6TT FET LOVT OLLI TOLL 27S Tt TIOT CVT TOTTI 90ST OTT Perl bZel Ley ZOTI Sort GIT ZErT 10 OVS T OGO'T OGO'T OTST 8771 O9ET OFFI OGO'T O60'T OFST 0960 O7FT O60'T OFST OGO'T O6GO'I DEFT O9ET O77T O7S'T OGO'T O60'T 0 yO ZIH 9TH SO LO 9D 610 €FH CHH 6€) 8FYH L¥O FH OFO 9FH SPH T¥O O€O 970 S7O YEH SEH GO “SO “SD 9D 9D CIO OED OED 68D -0FD = -0K0 090) 090 TPO TVD THO -0EO STO STD PTD PTO TO aprao4]8 jAordes1q-¢'T A 10ST 96€°T 7TCEI 9FFT 86TT ITVT OFT GOTT ZZTT 27ST Zee TIEI SHYT I CEST 969. S8TT 677 T OCF IT 9671 H8FT OTT 897 I O01 oY €CSl HOT OBIT O8F TL 86Il 88El OIFT FETT Z6¢ET 8S91 969°C LIE T 8TIT coc 7Z9. GOL Ser ZEVt €6ll O8FT ZZTI G66I'l Ol Be 867VT SSTI STITT 9S7T TOET 191 SSHT OOTIT OTIT PCSIT O7ZT O87 lI OSTT OTT SPST SHIT O9FT SOET O87 ESTI F8IT C6I'l I pe COST [O07 €7Il 6971 SOTT ZS7T OOF T SOCTI O€TT ZEST €871 TOE T OZTT OFT I LOST SETI HSFT SIFT COT C9OVT CLIT ELIT T'0 a OVS Il OGO'I OGO'T O7ST OT7T O9ET OFFI OGOT OGOT OFS'T 0S6°0 O€FT OGO'T OGOI OFST OGO'T O€FT O9ET O7Z7T OTST O60°T 060° 0 ed €T) 9€H SEH FTO 97TO S~TDO 8EO LYH IFH THD 89H @TVO €YH FYH G6OFD SPH OF 610 LO 9D ZIH 9YIH wZ CO CO “VCD -STO STD -BEO VD IXD IVD 09D CHO OED OED) 66D 09D 070 6TO 9D 9D SD SD SD # aprao4j8 jAordes1q-Z'T ay SCOT ESET OCIT OZTI LIST GOL OTST LZeEl LITT OO9L OFFT CVET 88IT [8H SSTI E€8I'l OOT = €860 9SEl FHHET GOTT bCST €7T8T [87 LOTI OOTT OST bEVT VEEL HCVT FEV OST T SPIT OI 8 6£6°0 €ZET EVI C9 OCST SENT COVT IST EIT C8 O€V I 8SLZET SZTI 87ST COLI SEIT I y SOOT Stel SYIT CLIT GOST ZESl P8ET PST CLIT Z8V 1 957% FSET OOET EFHVT SZTI CSTT T'0 o £860 IZETl O7II SEL 87S SIFT S67T GET TL OGL ZEST O€F I 99ET FETI SOFT EFI OCI'T 0 aS 1H SO 9H J/H 10 §IH 7IO OIH 6H €) @ 0 020 GID OfH 62H o SO AD AAD AAD WO -tlO “DO “EO “DO AO FO OID =6ID “BID “IID -9TD 9 apuaodj3 [Aordey-7 Z 960TT EIVT EET O8TT £99T C78 T SECT OFET TOST ISTT S6ET OZFT OGE'I HS7T 8ScE LOOT OOI SS 980 T 87H SSTT PCTI [6ST 900T 88€1l 7T77TI BLOT SETI I6ET LOST 69V'I 97HT ESZT TCIST Ol €660 I87l Tell 8zll 26ST £€86°0 GOVT OOTT SINT OTT OZET IZVT 667T 88ET IEET OSET I 1460 SEVT SOTT COLT OSST 0960 OOFT SOIT 99ST €OL'T 87HT SOET IGEL 8HFT TCEI CCl 10 0S6°0 O€7'T OGO'T OGO'T OFS'T 096°0 O€FT O60'T OFST OGO'T OFYT O9ET OT7T O7S'T O60°T 060°T 0 €{TH 90 8H ZH 1) @IH $O 6H @ TIH €) FO O7O GID O€H 67H LO: 5D) 2-10) = 1 200.8 SO. 26) GON. BO; = 80M 270m, ClO asl “BT OR BI “81 apiia94]8 pAorde)-| [nay] Ausuap xny WS 8 suroye semnonsed uaemioq [y] ySuay puog AWS 12 ‘sopliao4]8 [Aorded-1 pur -Ip ‘-OUOUL Jo sa[nosfour UT swWOIe JepMIpIed parosjas UseMIaq [Y] stpSuay puog suspuadap Aususp xnY AWS *9 PIGeL 13 . Fatty acids and glycerides Iving organisms The influence of SMF on | y9ET OGOT IEVT ECVT LOVT CSPI LITT 67VT POST FOOT COTT PCIIT SIST I8€'l O9€T G6PT SLIT 8h 1 LOTT SIST 88€T 881 TIE PSST 78? LLTT OO! 98Vl CHET SEVT COST SIFT CEVT OZIT 9ETT OSST OSST SITET OITT ZEST S87 LZZE1 IShT CZTI CLT ISSt 92h I0VT 9ZFT OPLT COST CEYT 69F'1 Ol S8ET PEE COVT ZLOET FIVT SIVT 6CI'T 8ZII CLS. CLOT SZIT SZIT OIST 1671 9ZET SLT POLL OCI OOVT OZFT IOVT OZVT S67 SZHT 6SE1 ISET I TEl"L VET T ISP l 8Zer Z8¢er Ley ZOTT 800T pest [7ST 960'T SGOT OTST FSTT O9€T LEVI COLT STITT OIST 80TT 8h I €ZeT OLY T 80ST SITT 6IT'T 10 0GO'T OGOT O7ST O77T O9ET O€FT O6O'T OGO'T OFST OFST OGO'T OGO'T OFST O9ET O77T O€FT OGO'T OGO'T OFST OGO'T O€FT O9ET OC7TT OTST O60'T 060°T 0 9SH SEH FD I9TO STO CSO CIH I9H 890 CHO SSH PSH £4 S¥O FHO LS0 S9H FSH 09D £9H 80 GIO LO 90 ZIH 9TH ED. ECO: SeO~ SS). “650 BES “BSD FESO TREO GERD. “EPO AERO. PPO FED =ZEO) 2092 7092) c00: FRED FRED col) “9D. “9D. Sy S$ “bO) apuaodys [Aosdeony -¢°7'T apiia94]8 pAorde)-T [Nav] Ausuap xny WS ye suroye semnonsed usamioq [y] ysuay puog AWS 14 Wojciech Ciesielski et al. / BioRisk 19: 1-24 (2023) ; “\ 4 J J ee ™ = “se i “yes Po ¥ a iil j / a | al = 3 - = ac pe gage ey | ed if cs a aL Ay i; ts 7 ae ath «wy pt “A. = eer ¥ ” a ae o* ny bs " et — y { f r| ail “, or yee — « — fl a 4 _ < at = al — _— —— a AN aa “A a OAMFU 0.1AMFU LAMFU LOAMFU 1OOAMFU a A , ‘ j I * Pi z 7“ oe _ \ tall re 2 “e -_. t . a wt ¥ a) Bae: 4, Ty a “a et a 1 al * td fa Ww ti oF * " hy — Ne is ae x eX Aft ad ae Ky o ie a r h % *)—_. 4 ba “ a c va > x 4 . =", i oo OAMFU 0.1LAMFU LAMFU 1 oe. NE Ue ye * ve %, F * « pa . a © a ta ae ba Pe ty ain he a d *. ; “" : ye ee ee P . we .* c - ee . t : Talal ye ie Be e w ee oh fs « ws eh * ae + s - “we 4 if . = oF Fe os pom *¢ al * “¢ | ia “gt a 4 - a7 % i LS [>< } 4 : * x * & as ?. . + | on d id } * I es. * the = b QOAMFU 0.1LAMFU LAMFU 1OAMFU lOOAMFU c ee | +) of ‘ , . r a 3 i 4 y , i << ' < x ee ae ath 4th th oe . o~ + a t as —y ~— ia { La * oe ie « * oe ' a | ‘ ~ “SE : 2 a a i J I we J ; a i tT + 1 7 te ] ‘ : a ‘i ! a Y YY. re AL i oa Aw A '< L . : i ! 4 t F ‘ a bf = QOAMFU 0.1AMFU 1AMFU 1OAMFU 1OOAMFU d 4 a * a, “2 / oF - ri i a oe —< oak cust Ey ~ % , a r* e — 7 | — 4 * 4 4 ee ayes “ = “ye * i as 4 2 4 - 4 a S 9 il com 4 Ne } uot lies rf a : * ‘ f ee 4, _ \ \ — - * \, ,- ghey an =e ee t . >» ' 59 L ‘. ‘A Pith . ~ a od i * “ ! “) ‘. b . i 4. ~ —_ 4, Fd / A et . a ’ Figure 2. Groups tri-dimensional structures of those molecules affected by increasing SMF flux density. The influence of SMF on living organisms. Fatty acids and glycerides 15 5 r se , 4 + , rt + # ; <1 ve . - nF ++ + | ae SS hea , rt aes ot 4 wa. , rt , ~~ * yr " j ‘ f y+ } © ie Ny , el ant a p< * py \ 4 at ( 4 \ a ’ . 1 F oe \ ee , + we pe * \ ry ) a a —' ~ Ae am ca ot \ >—— eed 7 4 » : r ' ’ f + ‘, ali —~ pat aed “— it ’ i _< \ ‘ \ » 4 ~< * reo ate eh — ‘Mel — \ fo —~¢ ie ; — ce i " mt ~ ae —— Bt ad 1 i OAMFU 0.1AMFU 1AMFU 1OAMFU 100AMFU * « 4 « * ‘ a 4 cis * rhe ew a Fat Nh s\r ye La a os » Va = a i. YY . s x * . Me ~~. nt ogee A a i | = ae o a Ne os wt oe - oe oe Patan e «th caf ~—« - - eS . oat . “. ier . alt ath « me . 4 il I T ‘es _ - ‘ « ; m , i . I e - ‘- . et - wy A ba wr“ ~~ ‘ a's \ a s \* * y fa “; : \p- “y 5 = ‘ . : _ ~~? Pin ’ fg _ s/~ / pf Fa if —~ iN ss ty HS “VY 4 “WN # . i" K fe ix aoe a’ t» 4 * ‘ ee ee ey — L iar SEE “t,o pee, ae ts: 9 a * a } “. / oe ; 1 < o r<. oe ime, od .— f et. f » * 9 > 4 * . Y- L. v* * ~ ; « i «, . y = nod e a ~ f / ” - "4 fi = / ‘ we | ae a . rT" . a . . i " * on -« ~~ . . aa —_— : db 7 ae ) are, . te a = or Ee —< a ae eran Tate < Poa >< - Gi fe os p- y ny « — » a 1 ae cee * you ete je | Pe vk Sipe wee ” \ Ly re: ae i a ‘e ‘ a a i 5 a 5 = a «* pale 3 “~ Nee ~k ace a =< xX yr —" ig + , os + OAMFU 0.1AMFU 1AMFU 10AMFU 100AMFU Figure 2. Continued. 16 Wojciech Ciesielski et al. / BioRisk 19: 1-24 (2023) . o * ” ee “hy , a a i. Vas Pls al% “r . « & s Ps ee e/; a/ AN op -_ ft e Py > ‘ } ial oe . « © . e . ‘ ai 9 : 1" a/ me 6 ‘ ms of e . 4 " t/ . 4 s a e e « > a a = s ‘_ . 6 3 vite « 4 e «© ¢ os oe ,— a et se § « a 8 « ‘ , enn, ai ie 6 * ea al — ae «—_» oe" ” ee —o * © ad © og . i - « “> . as ? _ \ -* o e 6 , <— ae F bad © a be Fata i é ~ # , € | a ’ ad — . wy ~ ao e ® Fe i & a . -s fo ut f @* » © id . *% © ™ © 7 ™“. * .) OAMFU 0.1AMFU 1AMFU 1OAMFU 1OOAMFU k "te = oe oe -) “ ae = a * ee oe s ol be ee we Se ¥ —— = he \ oe 7 if * . “x . AN as es . ad n © Ng Pe eh ae 4 + + 7: 7 ' . —— - “ a ae « \ a . 6 4 ba a . »-«" : tide Ps —— x7 xs \ Xe SS le aa ae i bs i] rd 4 * . »* «, . a? . \ . » ‘ s v ms é « * Se r] y os * x a a ioe ti 5 ee : a 2 . r r 2 ° oe a € * ok io Ge + , % « “¥ a ws a+ « oa QOAMFU 0.LAMFU 1AMFU lOAMFU 1OOAMFU ] Figure 2. Continued. bonds, that is, producing radical only data for atoms carrying unpaired electrons are quoted. The data for remained atoms are omitted as they deal with molecules of radical character and, hence, with specific biological activity. Figure 2 Tri-dimensional structures of the molecules of selected lipid acids and caproyl glycerides affected by increasing SMF flux density [AMFU]. a: octadecanoic acid; b: cis-octadec-9-enoic acid c: cis,cis-octa-9,12-dienoic acid, d: a// cis-octa-6.9.12- trienoic acid, e: trans-octadec-9-enoic acid, f: trans-octadec-11-enoic acid, g: all trans- octadec-6,9,12-trienoic acid, h: 1-caproyl glyceride, i: 2-caproyl glyceride, j: 1,2-di- caproyl glyceride, k: 1,3-dicaproyl glyceride, | — 1,2,3,-tricaproyl glyceride. Oxygen at- oms are marked red, carbon black and hydrogen atoms are coloured blue, respectively. The influence of SMF on living organisms. Fatty acids and glycerides 17 Discussion An increase in heat of formation of lipid acids (Table 1) and caproyl glycerides (Table 2) exposed to increasing flux density provides evidence for destabilization of those molecules by SME This effect was accompanied by an increase in their dipole moment. The structure dependent orders of increasing heat of formation of lipid acids changed in the order: trans-linolenic > linoleic > linolenic > elaidic > vaccenic > stearic > oleic and associated dipole moments of those molecules declined in the order: vaccenic > trans-linolenic > linolenic > stearic > oleic > elaidic > linoleic These orders show that both these parameters are independent of the number of double bonds and chain conformation. The increase in heat of formation and dipole moment of caproyl glycerides present following orders: heat of formation: 1,2,3-tricaproyl > 1,2-dicaproyl > 2-monocaproyl > 1-monocaproyl> 1,3-dicaproyl and dipole moment: 1-monocaproyl > 2-monocaproyl > 1,2,3-tricaproyl > 1,3-dicaproyl > 1,2-dicaproyl showing that this sequence of those parameters is independent of the degree and posi- tion of the esterification. An insight in Fig. 2 seems to explain those irregularities. Depending on flux den- sity, SMF induces twisting molecules out of the initially established plain and squeez- ing molecules around some bonds. In the living organisms lipids under consideration are utilized in metabolic process- es. Fatty acids are beta-oxidized in mitochondria and peroxisomes The beta oxidation is the major pathway for fatty acid degradation, but certain fatty acids also undergo the alfa oxidation. The_mechanism of beta oxidation resembles a reversal process of fatty acid synthesis. Iwo-carbon fragments are removed sequentially from the carboxyl end of the acid after steps of dehydrogenation, hydration, and oxidation to form a beta-keto acid, which is split by thiolysis which generates acetyl-CoA. ‘The latter may be converted into ATP, CO,, and H,O using the citric acid cycle and the electron transport chain. Unsaturated and odd-chain fatty acids require additional enzymatic steps for degrada- tion (Berg et al. 2019). Two auxiliary enzymes enoyl-CoA isomerase and 2,4-dienoyl- CoA reductase are involved into these fatty acids oxidation. The isomerase enzyme converts cis-conformer into trans. The reductase comes into play during oxidation of 18 Wojciech Ciesielski et al. / BioRisk 19: 1-24 (2023) polyunsaturated fatty acids (Mathews et al. 2000). First step of the metabolic process involves bonding of CoA isomerase to the carbonyl group carbon atom repulsing the OH group of the carboxylic group. This step is favoured by a high positive charge den- sity on the carbonyl C- atom and highly polarized C-OH bond. In the consecutive step the abstraction of proton from the chain a-atom generates formation of the ~CH=BCH double bond. ‘This step is favoured by a high positive charge density on the hydrogen atom bound to the a-carbon atom and a high polarization of the BC-H bond. Metabolism of triacylglycerols, named here as glycerides, usually involves either their partial or complete hydrolysis by lipases yielding lipid acid and glycerol (Winkler et al. 1990). This reaction comes to the hydrolysis of the of the acyl — glycerol ester. This reaction is favoured by a high positive charge density on the carbonyl carbon atom. The lysophosphatidic acid formed by the action on phosphatidic acid of phos- pholipase A, is another metabolic process providing, a main component of cell mem- branes (Moolenaar 1995). This reaction is favoured by a high negative charge density on the oxygen atom of the glycerol OH group. Taking into account that information, Table 3 reports solely charge density on the atoms of the carboxylic group and a- and B-methylene groups. Because, SMF can evoke the cis-trans transformations also charge density at the H-C=C-H atoms are given. SMF’s ability to accelerate the transition of a conformer from cis to trans can significantly affect the oxidation of unsaturated fatty acids. In molecules of some lipid acids flux density of 10 and 100 AMFU resulted in elongation of certain bonds above 2 A which is equiva- lent to ceasing these bonds. Charge densities on involved atoms are also reported in that Table. Table 4 reports bond lengths between all atoms considered in Table 3. An insight into Tables 3 and 4 reveals that charge density and bond lengths in the molecule of stearic acid change irregularly against increasing SMF flux density. The mol- ecule is linear and retains its linearity even when exposed to SMF of 100 AMFU (Fig. 2a). Thus the observed effect can result from twisting the molecule or its fragments pushing them out of SMF oriented along x-axis. The SMF flux density of 10 and 100 AMFU leads to deterioration of the molecules and that conclusion is drawn from the calculated elonga- tion of the C10-C11, C17-H54, C2-H24 and C1-H20 bonds well above 2A (Table 4). The atoms constituting the carboxylic group are the most susceptible to SME. Apart from atoms of the carboxylic hydroxyl group (atoms H58 and O55) and the B-chain carbon atom (C16), the 0.1 AMFU flux density has negligible effect on the charge densities on remaining atoms under consideration. Generally, flux density raising to 1 AMFU increased the positive charge density on the carbon atom bound hydrogen atoms (H58-51) and O55-bound hydrogen atom H58, indicating the direction of the corresponding bond polarization. Rising SMF flux density to 1 AMFU increases also the negative charge density on the O55 atom. Simultaneously, it decreases negative charge density on the O19, C17 and C16 atoms. Values of the positive charge density on the carbonyl carbon atom (the CDCC criterion) show that SMF of 0.1 AMFU weakly stimulates the first step of the metabolic process of stearic acid and SMF of 1 AMFU inhibits that process. The C=C bond formation (The CCF criterion) is inhib- ited by SMF of 0.1 AMFU and considerably stimulated by SMF of 1 AMFU, The influence of SMF on living organisms. Fatty acids and glycerides 19 The bent shape of the molecule of oleic acid (Fig. 2b) offers more ways of its sta- bilisation when exposed to SMF. They involve not only the twisting of their fragments out of the initial orientation along x-axis but also through space atom — atom van der Waals bonding and dispersion forces. Such circumstances make the molecule more resistant to SMF of higher flux density. Oleic acid molecule survives its exposure to flux density of 10 AMFU. For the vast majority of atoms, the changes of charge density against increasing flux density are more regular than that observed in the case of stearic acid. An increase in the positive charge is observed for H54, H22, H50, H51 and H39, that is, on almost all C and O bonded hydrogen atoms. ‘The decrease in the positive charge is noted for C18, C17, C16, H52 and H38 atoms. The O55, C19, C10 and C9 atoms face decrease in negative charge against increasing flux density. The 100 AMFU flux density breaks the H-54, C18-C17, C15-C14, C10-H39, C9-H38, C8-H36, C8- H37, C4-C5 and C1-H22 bonds. Based on the CDCC and CCF criteria one may state that SMF of 0.1 to 10 AMFU inhibits the first step of the metabolic process and stimulates the formation of the C=C bond, respectively. The introduction of the subsequent isolated double C=C bond into the 18 carbon chain (linoleic acid) results in further deformation of the chain and, hence, increases ef- ficiency of intramolecular, through space, interaction. An increase in the resistance of the molecule to SMF flux density is noted. Computations reveal that the molecule survives exposure to the flux density of 100 AMFU. In this molecule the positive charge increases against a flux density increase on the H52, H40, H41, H42, H10, H13 and H14 atoms and, simultaneously, the decrease of that charge is observed on the C28, H43 and H37 atoms. An increase in the negative charge against flux density takes place on the O36, O55, C30, C26 and C4 atoms. It is accompanied by a decrease in the negative charge on the C29, C1 and C3. 100 AMFU flux density turns the negative charge on the Cl atom into positive. A relatively weak sensitivity of the bond lengths to an increase in the flux density is observed. Based on the CDCC and CCF criteria SMF of 0.1 to 100 AMFU inhibits the first step of the metabolic process and stimulates its second step. The third double bond in the 18 carbon atom chain (linolenic acid) offers further possibilities of building resistance to an increase in the flux density (Fig. 2d). However, at 10 AMFU ceases the C19-H49 bond and at 100 AMFU ceases also the C1-H39 bond. Changes in the charge density against increasing flux density is irregular and, generally, fairly subtle. Neither the first nor the second step of the metabolic process are stimulated by SMF of 0.1-to 1 AMFU. The structure of trans-monounsaturated elaidic acid (Fig. 2e) offers very limited possibilities of stabilisation on exposure of SMF. The localisation of the double bond offers most likely a twisting of some fragments out of the x-axis. Computations for the molecule exposed to SMF above 1 AMFU resulted in the transformation of the trans- conformation into cis-conformation. As a rule, an increase in flux density evokes a sometimes irregular increase in charge density on all hydrogen atoms. Simultaneously, on C atoms, except C18, negative charge increases. On essential for metabolism C18 atom negative charge decreases. SMF of increasing flux density inhibits reaction with CoA but stimulates formation of the C=C bond. 20 Wojciech Ciesielski et al. / BioRisk 19: 1-24 (2023) In the molecule of vaccenic acid (trans-11-enoic acid) (Fig. 2f), the shift of the double bond modulates the structure of the carbon chain to the extent providing some through space interactions of certain atoms. These circumstances stabilise the molecule to such an extent that it does not suffer the cés-trans-transformation even at 100 AMFU, However, above 10 AMFU the molecule deteriorates by splitting the C18-H49, C12-H10, C10- H45 and C8-H35 bonds. An increase in charge density on all hydrogen atoms and the C20 atom follows an increase in flux density. Simultaneously, the negative charge density increases on the O1, O2, C9, C15 and C17 atoms. Solely negative charge density on the C16 atom decreases. ‘The flux density rising up to 10 AMFU has a very subtle effect on the charge density on the carbonyl carbon atom but it stimulates formation of the C=C bond. No trans-cis isomerization takes place in the molecule of trans-linolenic acid (Fig. 2g) on its exposure to flux density as high as 100 AMFU. Instead, at 100 AMFU the C17-H44, C12-H39 and C12-H40 bonds split. Changes of the charge density with an increase in flux density are irregular but general tendency of increase in the charge density on all hydrogen and C20 atoms is followed. Simultaneously, negative charge density increases on the O1, O2, C10, Cl and C18 atoms. An decrease in the positive charge takes place on the C8 atom and on the C19, C14 and C11 atoms decreases their negative charge. SMF of 0.1 AMFU strongly stimulates the first step of the metabolic path, whereas SMF of 1 AMFU stimulates it weakly and SMF of 10 AMEFU inhibits it. Every value of flux density in the range 0.1 to 10 AMFU stimulates formation of the C=C bond. In a case of mono-, di- and three-caproyl glycerides the charge density on the car- boxylic carbon atom varies irregularly with an increase in applied flux density. Solely in 1,2,3-tricaproyl glyceride the flux density, regardless of its value, always stimulates the hydrolysis (see Table 5). Most frequently, the flux density of 0.1 AMFU inhibits reaction of the hydroxyl groups whereas SMF of higher flux density stimulates their reactivity. Conclusions Mainly two factors are responsible for susceptibility of molecules to SME The Lorentz force is one of them. It acts on moving electrons, which at high intensity influences the natural geometry of orbitals. This problem is quite difficult to include in the cal- culations, so the simplified approach does not take it into account. The second reason is the a ceasing of the coherence of the binding electron pair is the second factor. It persists despite electrostatic repulsion by magnetic interactions. A very strong exter- nal magnetic field competes with mutual fields evoking splitting the binding electron pairs into two unpaired electrons. The process runs as a gradual weakening of the mutual pairing of electrons. The binding electron pair is the fundamental element of the chemical bond. On growing SME, such bonds initially expand and in order to dis- integrate on exceeding the critical length. It generates a pair of radicals. Such radicals are very chemically active and can bind to ambient molecules, changing their chemical structure and, therefore, also their biological activity. The influence of SMF on living organisms. Fatty acids and glycerides 21 The distribution of electrical charges in all analyzed lipids resemble one another. Except the carbonyl carbon atom remaining carbon atoms take higher electron density. The exceptional H45 atom in 1,3-dicaproyl glycerol at a field above 1 AMFU faces an electron deficit. The exceptional carbonyl carbon atom carries a clear electron deficit. It results from bonding that atom to the strongly electron withdrawing oxygen atom. The anomaly of the H45 atom is a consequence of the specific conformation of the molecule of this ester. SMF destabilizes lipid acids and caproy]l glycerides irregularly against increasing flux density. The changes in the heat of formation of those compounds are accompanied also by irregular against increasing flux density increase in the dipole moment of those molecules. Observed irregularities result from the ability of those molecules to twist out of the initially established SMF plain, and squeezing fragments of the molecules around some bonds. Such mobility of the molecules in SMF provides a possibility of through space interactions between fragments of the molecules. These interactions involve van der Waals bonding and dispersion forces. These circumstances are responsible for irregu- lar against applied flux density changes of the charge density of the atoms and length of the bonds between them. For these reasons either stimulation or inhibition of the meta- bolic processes of the lipids under consideration irregularly depends on the flux density. In some molecules SMF flux density of 10 AMFU and above breaks some C-H valence bonds. In such manner free radicals are generated. The sole conversion of the cis-trans conformations was observed in case of elaidic acid which at 10 AMFU converted into cis conformer. Depending on the structure and applied flux density SMF either stimulates or inhibits the metabolic processes of the lipids under study. References Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biologi- cal catalysis: From enzyme databases to general principles. Journal of Biological Inorganic Chemistry 13(8): 1205-1218. https://doi.org/10.1007/s00775-008-0404-5 Arteaga Mifano HL, Ana Carolina de Sousa Silva AC, Sergio Souto S, Xavier Costa EJ (2020) Magnetic fields in food processing perspectives, applications and action models. Processes (Basel, Switzerland) 8(7): 814. https://doi.org/10.3390/pr8070814 Bao S, Guo W (2021) Transient heat transfer of superfluid “He in nonhomogeneous geom- etries: Second sound, rarefaction, and thermal layer. Physical Review B 103(13): e134510. https://doi.org/10.1103/PhysRevB.103.134510 Beretta G, Mastorgio AF, Pedrali L, Saponaro S, Sezenna E (2019) ‘The effects of electric, magnetic and electromagnetic fields on microorganisms in the perspective of bioreme- diation. Reviews in Environmental Science and Biotechnology 18(1): 29-75. https://doi. org/10.1007/s11157-018-09491-9 Berg JM, Tymoczko JL, Gatt Jr GJ, Stryer L (2019) Biochemistry (9% ed). W.H Freeman and Company, New York. 22 Wojciech Ciesielski et al. / BioRisk 19: 1-24 (2023) Bharti D, Banerjee I, Makowska A, Jarzebski M, Kowalczewski PL, Pal K (2023) Evaluation of the effect of stearyl alcohol and span-60 tuned sunflower wax/sunflower oil oleogel on but- ter replacement in whole wheat cake. Applied Sciences (Basel, Switzerland) 13(2): 1063. https://doi.org/10.3390/app 13021063 Brasaemle DL (2007) Thematic review series: Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and con- trol of lipolysis. Journal of Lipid Research 48(12): 2547-2559. https://doi.org/10.1194/ jlr.R700014-JLR200 Buchachenko A (2009) Magnetic isotope effect in chemistry and biochemistry. Nova Science Publisher, NY. Buchachenko LA (2014) Magnetic control of enzymatic phosphorylation. Journal of Physical Chemistry & Biophysics 4: e1000142. https://doi.org/10.4172/2161-0398.1000142 Buchachenko A (2016) Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics 37(1): 1-13. https://doi.org/10.1002/bem.21947 Buchachenko AL, Kuznetsov DA, Breslavskaya NN (2012) Chemistry of enzymatic ATP syn- thesis: An insight through the isotope window. Chemical Reviews 112(4): 2042-2058. https://doi.org/10.1021/cr200142a Carpenter JE, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the different hybrids for different spins natural bond orbital procedure. Journal of Molecular Structure THEOCHEM 139: 41-62. https://doi.org/10.1016/0166-1280(88)80248-3 Charistos ND, Mufoz-Castro A (2019) Double aromaticity of the B-40 fullerene: Induced mag- netic field analysis of pi and sigma delocalization in the boron cavernous structure. Physical Chemistry Chemical Physics 21(36): 20232-20238. https://doi.org/10.1039/C9CP04223G Ciesielski W, Girek T, Oszczeda Z, Soroka JA, Tomasik P (2021) Towards recognizing mecha- nisms of effects evoked in living organisms by static magnetic field. Numerically simulated effects of the static magnetic field upon simple inorganic molecules. F1000 Research 10: e611. https://doi.org/10.12688/f1000research.54436.1 Ciesielski W, Girek T, Oszczeda Z, Soroka JA, Tomasik P (2022a) Potential risk resulting from the influence of static magnetic field upon living organisms. Numerically simulated ef- fects of the static magnetic field upon simple alkanols. BioRisk 18: 35-55. https://doi. org/10.3897/biorisk. 18.76997 Ciesielski W, Girek T, Kotoczek H, Oszczeda Z, Soroka JA, Tomasik P (2022b) Potential risk resulting from the influence of static magnetic field upon living organisms. Numerically simulated effects of the static magnetic field upon simple carbohydrates. BioRisk 18: 57— 91. https://doi.org/10.3897/biorisk.18.77001 Ciesielski W, Girek T, Oszczeda Z, Soroka JA, Tomasik P (2022c) Potential risk resulting from the influence of static magnetic field upon living organisms. Numerically simulated effects of the static magnetic field upon porphine. BioRisk 18: 93-104. https://doi.org/10.3897/ biorisk. 18.80607 Ciesielski W, Girek T, Oszczeda Z, Soroka JA, Tomasik P (2022d) Potential risk resulting from the influence of static magnetic field upon living organisms. Numerically simulated effects of the static magnetic field upon metalloporphyrines. BioRisk 18: 115-132. https://doi. org/10.3897/biorisk.18.86616 The influence of SMF on living organisms. Fatty acids and glycerides 29 Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States (2013) High Magnetic Field Science and Its Application in the United States; Current Status and Future Directions. Natl. Res. Council, National Acad., The Na- tional Academies Press, Washington, D.C. https://doi.org/10.17226/18355 Coones RI, Green RJ, Frazier RA (2021) Investigating lipid headgroup composition within epithelial membranes: A systematic review. Soft Matter 17(28): 6773-6786. https://doi. org/10.1039/D1SM00703C Farberovich OV, Mazalova VL (2016) Ultrafast quantum spin-state switching in the Co-octae- thylporphyrin molecular magnet with a terahertz pulsed magnetic field. Journal of Magnet- ism and Magnetic Materials 405: 169-173. https://doi.org/10.1016/j.jmmm.2015.12.038 Frisch MJ, Trucks GW, Schlegel HB, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2016) Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford. https://gaussian.com/g09citation/ Froimowitz M (1993) HyperChem: A software package for computational chemistry and molecu- lar modelling. BioTechniques 14: 1010-1013. https://pubmed.ncbi.nlm.nih.gow/8333944/ Glendening ED, Reed AE, Carpenter JE (1987) Extension of Lewis structure concepts to open- shell and excited-state molecular species, NBO Version 3.1. Ph.D. thesis, University of Wisconsin, Madison, WI. Hamza A-SHA, Shaher SA, Mohmoud A, Ghania SM (2002) Environmental pollution by magnetic field associated with power transmission lines. Energy Conversion and Manage- ment 43(17): 2442-2452. https://doi.org/10.1016/S0196-8904(01)00173-X Heinz E (1996) Plant glycolipids: structure, isolation and analysis, Advances in Lipid Method- ology, W.W. Christie (Ed.) Vol. 3. Oily Press, Dundee, 211-332. Jaworska M, Domaniski J, Tomasik P, Zndj K (2014) Methods of stimulation of growth and pathogenicity of entomopathogenic fungi for biological plant protection. Polish Patent 223412. Jaworska M, Domanski J, Tomasik P, Zndj K (2016) Preliminary studies on stimulation of entomopathogenic fungi with magnetic field. Journal of Plant Diseases and Protection 12: 295-300. https://doi.org/10.1007/s41348-016-0035-y Jaworska M, Domaniski J, Tomasik P, Zndj K (2017) Preliminary studies on stimulation of entomopathogenic nematodes with magnetic field. Promocja Zdrowia i Ekologia 4(9). Kohno M, Yamazaki M, Kimura I, Wada M (2000) Effect of static magnetic fields on bacte- ria: Streptococcus mutans, Staphylococcus aureus, and Escherichia coli. Pathophysiology 7(2): 143-148. https://doi.org/10.1016/S0928-4680(00)00042-0 Letuta UG, Berdinskiy VL (2017) Magnetosensitivity of bacteria FE. coli: Magnetic isotope and magnetic field effects. Bioelectromagnetics 38(8): 581-591. https://doi.org/10.1002/ bem.22073 Marchand N, Lienard P, Siehl H, Izato H (2014) Applications of molecular simulation soft- ware SCIGRESS in industry and university. Fujitsu Scientific and Technical Journal 50(3): 46-51. https://www.fujitsu.com/global/documents/about/resources/publications/fstj/ar- chives/vol50-3/paper08.pdf Mathews CK, van Holde KE, Ahern KG (2000) Biochemistry 3%! Ed. Addison-Wesley Publ. Co., San Francisco, Ch. 18. 24 Wojciech Ciesielski et al. / BioRisk 19: 1-24 (2023) Moolenaar WH (1995) Lysophosphatidic acid, a multifunctional phospolipid messenger. The Journal of Biological Chemistry 270(22): 12949-12952. https://doi.org/10.1074/ jbe.270.22.12949 Otero L, Pozo A (2022) Effects of the application of static magnetic fields during potato Freezing. Journal of Food Engineering 316: 110838. https://doi.org/10.1016/j.jfood- eng.2021.110838 Rankovic V, Radulovic J (2009) Environmental pollution by magnetic field around power lines. International Journal of Qualitative Research 3(3): 1-6. http://www.cqm.rs/2009/3igqc/24. pdf Rittie L, Perbal B (2008) Enzymes used in molecular biology: A useful guide. Journal of Cell Communication and Signaling 2(1-2): 25-45. https://doi.org/10.1007/s12079-008- 0026-2 Sena B, Dhal S, Sahu D, Sarkar P, Mohanty B, Jarzebski M, Wieruszewski M, Behera H, Pal K (2022) Variations in microstructural and physicochemical properties of soy wax/soybean oil-derived oleogels using soy lecithin. Polymers 14(19): 3928. https://doi.org/10.3390/ polym14193928 Steiner VE, Ulrich T (1989) Magnetic field effects in chemical kinetics and related phenomena. Chemical Reviews 89(1): 51-147. https://doi.org/10.1021/cr0009 1a003 Sul HS (2017) Metabolism of fatty acids, acylglycerols & sphingolipids. Basicmedical Key, Chapter 16. https://basicmedicalkey.com/metabolism-of-fatty-acids-acylglycerols-and-sphingolipids Tang Y, Guo W, Lvov W, Pomyalov A (2021) Eulerian and Lagrangian second-order statis- tics of superfluid “He grid turbulence. Physical Review B 103(14): e144506. https://doi. org/10.1103/PhysRevB.103.144506 Winkler FK, D’Arcy A, Hunziker W (1990) Structure of human pancreatic lipase. Nature 343(6260): 771-774. https://doi.org/10.1038/34377 1a0 Woodward JR (2002) Radical pairs in solution. Progress in Reaction Kinetics and Mechanism 27 (3): 165-207. https://doi.org/10.3184/007967402103165388 Xu A (2018) High static magnetic fields (SMFs) on reproduction and development of an in- tact living organism: Caenorhabditis elegans In: Zhang X, Wang J (Eds) Interdisciplinary Research Magnetic Fields and Life Sciences. Physics — Series of Magnetics and Magnetic Materials. Science Press EDP Sciences. Yao L, Xu S (2014) Detection of magnetic nanomaterials in molecular imaging and diag- nosis applications. Nanotechnology Reviews 3(3): 247-268. https://doi.org/10.1515/ ntrev-2013-0044