Zoosyst. Evol. 98 (2) 2022, 201-212 | DOI 10.3897/zse.98.81463 > PENSUFT. Gp Museue ror BERLIN Paracapoeta, a new genus of the Cyprinidae from Mesopotamia, Cilicia and Levant (Teleostei, Cypriniformes) Davut Turan', Ciineyt Kaya!, Ismail Aksu!, Yusuf Bektas? 1 Recep Tayyip Erdogan University, Faculty of Fisheries and Aquatic Sciences, 53100 Rize, Turkey 2 Recep Tayyip Erdogan University, Department of Biology, Faculty of Arts and Sciences, 53100 Rize, Turkey https://zoobank. org/BB7F843A-CAEC-46CC-A3EE-4EA 1169F B4AB Corresponding author: Ciineyt Kaya (cnytkaya@yahoo.com) Academic editor: Nicolas Hubert # Received 2 February 2022 # Accepted | June 2022 Published 21 June 2022 Abstract The molecular and morphological studies carried out within the scope of this study revealed that the scrapers, known as the Meso- potamian group, belong to a different genus. The Paracapoeta gen. nov., from the Mesopotomia and Levant, is distinguished from Capoeta and Luciobarbus species by the presence of a strong ligament between the base of the last simple and the first branched rays of the dorsal-fin (vs. no or a very weak ligament). The Paracapoeta further differs from Capoeta by the last simple dorsal-fin ray strongly ossified in adult specimens (more than 75%, vs. less than 75%). The Paracapoeta further differs from Luciobarbus by the lower lip with horny layer (vs. fleshy lips). The molecular phylogeny based on the combined dataset (COI + Cytb, 1312 bp.) showed that the genus Paracapoeta was recovered from the other groups in the subfamily Barbinae with high bootstrap and posterior probability values (BP: 94%, PP: 0.96). Also, Paracapoeta and Capoeta are well differentiated by an average genetic distance of 8.02+40.78%. The morphological and molecular findings have largely overlapped each other. Besides, Capoeta turani is treated as a synonym of Capoeta erhani. Key Words Capoeta, Mesopotamia, molecular phylogeny, scrapers, taxanomy 1. Introduction Cyprinid genus Capoeta Valenciennes, 1842 has a wide distribution in the Mediterranean, Middle East, Caucasus and South-West Asia. Even though the members of the genus occur in lakes and spring waters, they generally prefer fast-flowing streams (Kaya 2019). The genus has attracted the attention of various fish taxonomists and they have described a number of new species over the last fif- teen years (Turan et al. 2006a, 2006b; Ozulug and Freyhof 2008; Alwan 2010; Zareian et al. 2016; Turan et al. 2017; Elp et al. 2018). In parallel with this, many genetic studies have been performed (Turan 2008; Zareian et al. 2016; Bektas et al. 2017; Bektas et al. 2019). The Mesopotamian Capoeta group, which is proposed as a new genus in this study, appears to be in a different branch from the Capoeta genus in many genetic studies (Levin et al. 2012; Berrebi et al. 2014; Ghanavi et al. 2016; Jouladeh-Roudbar et al. 2017; Zareian et al. 2018; Bektas et al. 2017, 2019). Molecular phylogenies based on nuclear and mitochon- drial molecular markers unambiguously demonstrated that Capoeta is clustered together with the Western Palaearctic barbels of the genera Barbus Daudin, 1805 and Luciobar- bus Heckel, 1843 (Durand et al. 2002; Gante 2011; Levin et al. 2012; Buonerba et al. 2015; Yang et al. 2015). How- ever, hybridization-based polyploidy has likely played a major role in the evolution of the hexaploid genus Capo- eta (Yang et al. 2015; Levin et al. 2019), which emerged through intergeneric hybridization of Luciobarbus (2n = 100) and Cyprinion Heckel, 1843 (2n = 50) (Yang et al. 2015). In fact, the genus Capoeta (6n; Turan 2008), a monophyletic unit and well-defined genus, probably evolved from the ancestors of a tetraploid Luciobarbus as it is closely related to Luciobarbus mursa (Guldenstadt, Copyright Turan, D. et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 202 1773) and L. subquincunciatus (Gunther, 1868) (Levin et al. 2012; Berrebi et al. 2014; Yang et al. 2015). The mtDNA sequences of the protein-coding, cyto- chrome oxidase subunit I (COI) and cytochrome b (Cytb) genes, are powerful markers for deducing evolutionary relationships at the species, genera, family, and higher levels (Johns and Avise 1998; Miya et al. 2003; Hebert et al. 2004; Kartavtsev and Lee 2006; Kartavtsev 2009, 2011; Kartavtsev et al. 2017). According to these mito- chondrial datasets, it was reported that Capoeta is nested within Luciobarbus (Durand et al. 2002; Tsigenopoulos et al. 2003; Gante 2011; Levin et al. 2012; Yang et al. 2015), and probably the Mesopotamian Capoeta group [Capoeta trutta (Heckel, 1843), C. erhani Turan, Kottelat & Ekme- kei, 2008, C. turani Ozulug & Freyhof, 2008, C. barroisi Lortet 1894, C. anamisensis Zareian, Esmaeili & Freyhof, 2016, and C. mandica Bianco & Banarescu, 1982] was initially diverged from other Capoeta groups (Berrebi et al. 2014; Ghanavi et al. 2016; Bektas et al. 2017, 2019; Jouladeh-Roudbar et al. 2017; Zareian et al. 2018). In recent years, various ideas have been put forward among researchers about the validity of Mesopotamian group species. Erk’akan and Ozdemir (2011) compared C. turani (Seyhan) and C. erhani (Ceyhan) morphologically, based on data provided from literature and claimed that both are the synonyms of the C. barroisi. Later, Ozdemir (2013) developed this claim further and stated that C. turani (Sey- han), C. erhani (Ceyhan), C. barroisi (Orontes) and C. trutta (Persian Gulf basin) are conspecific and all belong to C. trut- ta. Recent studies supported the close relationship between C. turani and C. erhani; however, C. erhani, C. barroisi and C. trutta are molecularly well distinguished (Bektas et al. 2017, 2019). Detailed morphological comparisons among these species confirmed these genetic results (Kaya 2019). Here (1) we discussed the validity of the Capoeta tura- ni and (11) proposed a new generic name, Paracapoeta, for the scrapers, formerly known as the Mesopotamian Capo- eta group based on morphological and molecular analysis. 2. Materials and methods 2.1. Sample collection See the list of materials examined in Turan et al. (2008), Elp et al. (2018), Kaya (2019), Kaya et al. (2020), Bay¢elebi (2020). 2.2. Morphological analyses The care of experimental animals was consistent with the Republic of Turkey’s animal welfare laws, guidelines and policies approved by Recep Tayyip Erdogan University Local Ethics Committee for Animal Experiments (permit reference number 2014/77). Samples were collected by electro-shocker. After anaes- thesia, fish were fixed in 4% formaldehyde. Methods for counting followed Kottelat and Freyhof (2007). The later- zse.pensoft.net Turan, D. et al.: Paracapoeta, a new genus of the Cyprinidae al line scales were counted from the first scale touching the shoulder girdle to the posterior-most scale at the end of the hypural complex. The last two branched rays articulating on a single pterygiophore in the dorsal and anal fins were count- ed as “14.” The simple dorsal- and anal-fin rays were not counted because the anteriormost rays are deeply embedded. For osteological preparation (last simple dorsal-fin ray), one specimen of each selected species of Paraca- opeta and Capoeta (Paracaopeta trutta [200 mm SL], P. erhani [190 mm SL] P. barroisi [190 mm SL], Capoeta damascina (Valenciennes, 1842) [205 mm SL] C. tinca (Heckel, 1843) [190 mm SL] and C. pestai (Pietschmann, 1933) [195 mm SL]) were cleared and stained with aliz- arin red S, according to the protocol of Taylor and Van Dyke (1985). The specimens were examined using a ste- reo microscope (Nikon SMZ1500), and photos were tak- en using a digital machine with a glycerol bath. 2.3. Molecular data analyses The COI (577 bp.) and Cytb (735 bp.) fragments of the seventy-one samples for Capoeta, (Cytb: Hashemza- deh Segherloo et al. unpublished; Alwan et al. 2016; Za- reian et al. 2016, 2018; Zareian and Esmaeili 2017; Bek- tas et al. 2017, 2019; COI: Levin et al. 2012; Ghanavi et al. 2016; Zareian et al. 2016, 2018; Zareian and Esmaeili 2017), Luciobarbus (Cytb: Geiger et al. 2014; Yang et al. 2015; Khaefi et al. 2017, 2018; Hashemzadeh Segherloo et al. unpublished, COI: Zardoya and Doadrio 1998; Tsig- enopoulos and Berrebi 2000; Doadrio et al. 2002, 2016; Tsigenopoulos et al. 2003; Mesquita et al. 2007; Levin et al. 2012; Buonerba et al. 2013; Yang et al. 2015; Brahimi et al. 2016, 2017; Touil et al. 2019; Benovics et al. 2020), Barbus (Cytb: Khaefi et al. 2017; Turan et al. 2018; Guclt et al. 2020, COI: Keskin unpublished; Zardoya and Doadrio 1999; Meraner et al. 2013; Levin et al. 2019; Ozpicak and Polat 2019), Cyprinion (Cytb: Rahman et al. unpublished; Agha et al. unpublished, COI: Durand et al. 2002; Yang et al. 2015), Scaphiodonichthys (Cytb: Yang et al. 2013; Miya unpublished, COI: Yang et al. 2015) and Aulopyge species (Cytb: Geiger et al. 2014, COI: Ludo&ki et al. 2020), which are included in the subfamily Barbinae (GenBank accession number, Suppl. material 1: Table S1) were combined with the Clustal W method (Thompson et al. 1994) in the Bioedit 7.2.5 (Hall 1999) as a dataset with a total length of 1312 bp. For genera Capoeta, Luciobarbus, Barbus, Cyprinion, Scaphiodonichthys Vinciguerra, 1890, Aulopyge Heckel, 1841 and Paracapoeta gen. nov., the average intra- and intergeneric distances were computed by the General Reversible Time (GTR) model with gamma distributed invariant sites (G+I) in MEGA X (Kumar et al. 2018). The program jModeltest 0.1.1 (Posada 2008) was used to obtain the best evolutionary model (GTR + I + G for AIC and TrN + 1 + G for BIC) for combined dataset (Cytb+- COI). Bayesian inferences (BI) was conducted using Mr- Bayes v3.2.1 program (Ronquist et al. 2012). Maximum likelihood (ML) algorithm was carried out with GARLI 2.0 (Zwickl 2006) program. For ML, Bootstrap analyses Zoosyst. Evol. 98 (2) 2022, 201-212 were conducted with 300 pseudo-bootstrap replicates. Bayesian posterior probability support for each node was calculated with MrBayes v3.2.1 using 4 <10° Mar- kov Chain Monte Carlo (MCMC) steps and the first 2500 trees (10000 generation) were discarded as burn in. 2.4. Abbreviations used FFR Recep Tayyip Erdogan University Zoology Museum of the Faculty of Fisheries, Rize; SL standard length; BI, Bayesian inference; ML maximum likelihood; mtDNA mitochondrial deoxyribonucleic acid; Cytb cytochrome b; COI cytochrome c oxidase subunit 1; AIC Akaike Information Criteria; BIC Bayesian Information Criteria; bp base pal; BP Bootstrap Percentage; PP Bayesian Posterior Probability. 3. Results 3.1. Capoeta turani Ozulug & Freyhof, 2008, a synonym of C. erhani In the original description, C. erhani (Ceyhan River) is distinguished from C. turani (Seyhan River) by having SS OS an pn Meee ay w, Pe, Baas dep? 2) 2 2 er Zz. Aa y 203 numerous spots (vs. few) and a brown back, lateral head and body (vs. silvery). Besides, the spots in C. erhani are large and often fused into blotches giving the fish a mot- tled appearance in individuals smaller than 120 mm SL (vs. spots are always small and never fused into blotch- es in C. turani. Also, caudal peduncle and operculum of C. erhani are always densely spotted (vs. few isolated spots or no spots). Indeed, the silvery body color and the shape, form and number of the spots used in the original description were useful to distinguish both species. However, the fact is that Cakit (type locality) is a constantly turbid stream (confirmed by Jorg Freyhof, pers. comm., 2019) which has possibly caused these differences in body color and pattern. These changes have also been ob- served in other species (Capoeta damascina, Oxynoe- macheilus sarus, Garra turcica, Squalius adanaensis, Chondrostoma ceyhanensis, Salariopsis sp.) co-occur- ring with Capoeta turani. Besides, in the original description, C. turani is distin- guished from C. erhani by having more lateral line scales (64—70, vs. 69-78). However, our examination of lateral line scales of both species completely overlaps (63—70 in stream Aksu, Ceyhan; 63—76 in stream Cakit, Seyhan; 71-79 in stream Ucirge, Seyhan). On the other hand, recent molecular studies have stat- ed that there is no difference (0.35%) between these two species at species level (Bektas et al. 2017, 2019). In the light of this information, we treated C. turani as a syn- onym of C. erhani. Figure 1. Presence (a, b) and absence (¢, d) of strong ligament between the base of the last simple and the first branched rays of the dorsal-fin; a. Paracapoeta trutta, 227 mm SL, Euphrates River; b. P. erhani, 265 mm SL, Ceyhan River; Capoeta damascina, 250 mm SL, Euphrates River; Luciobarbus pectoralis, 227 mm SL, Orontes River. zse.pensoft.net 204 Turan, D. et al.: Paracapoeta, a new genus of the Cyprinidae Key to Paracapoeta gen. nov., Capoeta and Luciobarbus genera il Lower lip with horny layer; no fleshy lipS...............cccceeeeee Lower lip without horny layer on; fleshy lipS.................00 ite tS a Be tele tildes TARE TST gd Retell aha a Chae Se Luciobarbus 2 The presence of a strong ligament between the base of the last simple and the first branched rays of the dor- se aerRr her FON BLE reer! (eRe BLT Paracapoeta gen. nov. - No, or very weak ligament between the base of the last simple and the first branched rays of the dorsal-fin..... Capoeta Figure 2. Melanophores on the free part of the flank scales: upper row from left, P trutta 146 mm SL; P. erhani, 201 mm SL; P. barroisi, 155 mm SL; middle row from left, C. capoeta; 198 mm SL; C. banarescui; 181 mm SL; C. damascina, 181 mm SL; lower row from left, Luciobarbus lydianus, 192 mm SL; L. barbulus, 155 mm SL; L. capito, 220 mm SL. 3.2. Rediagnosis of Capoeta Capoeta Valenciennes, 1842 Rediagnosis. The body fusiform and slightly compressed laterally. In adult individuals, the general body color is brownish, and without dark brown or blackish spots (ex- cept C. pestai). The head plain brownish, and no black spots on head and cheek. The mouth inferior, mouth trans- versely slit or horseshoe-shaped. Lips not developed and lower lip with keratinize edge. One or two pairs of bar- bel around the mouth. The last simple dorsal-fin slightly or moderately ossified (less than %75) and its posterior edge serrated (except C. antalyensis). No or very weak ligament between the base of the last simple and the first branched rays of the dorsal-fin. There are melanophore zse.pensoft.net rows on the posterior edge of the flank scales. There is no keel in predorsal area, in front of dorsal-fin. Type species. Cyprinus capoeta Guldenstadt, 1773 [actual status of the type species 1s Capoeta capoeta (Guldenstadt, 1773)]. Included species. Capoeta aculeata, C. antalyensis, C. aydinensis, C. banarescui, C. bergamae, C. buhsei, C. caelestis, C. capoeta, C. coadi, C. damascina, C. ekmek- ciae, C. ferdowsii, C. fusca, C. gracilis, C. heratensis, C. kaput, C. macrolepis, C. oguzelii, C. pestai, C. pyragyi, C. razii, C. saadii, C. sevangi, C. shajariani, C. sieboldii, C. tinca, C. umbla. Distribution. Afghanistan, Armenia, Azerbaijan, Geor- gia, Iran, Iraq, Jordan, Syria, Pakistan, Kazakhstan, Pal- estine, Tajikistan, Turkey, Turkmenistan and Uzbekistan: 205 Zoosyst. Evol. 98 (2) 2022, 201-212 The genus Capoeta has a wide distribution in the Mediter- ranean, Middle East, Caucasus and South-West Asia. 3.3. Paracapoeta, new genus Paracapoeta gen. nov. 1 INZDLONLOI OAAN AA AWDNALA IIA 19D0WNN1NoO httnc:/ hank arao/CARBN6907_9DAIDN A AT_RT6A_90N7 A 120T)01 NDB Nttps://Z000aNK. OTE/T 6B60697-9A20-4AA/-BD64-207A 139D0 } Type species. Scaphiodon trutta Heckel 1843 [actual status of the type species is Paracapoeta trutta (Heckel, 1843)]. Diagnosis. The new genus Paracapoeta is distinguished from other genus of Capoeta and Luciobarbus by having a strong ligament between the base of the last simple and the first branched rays of the dorsal-fin (Fig. la, b) (vs. no or a very weak ligament in Capoeta and Luciobarbus (Fig. lc, d)). The new genus is further distinguished from Capoeta and Luciobarbus by the distribution of melano- phores on the flank scales (Fig. 2). In Paracapoeta, the posterior part of the scales is covered by more or less mela- nophores that are irregularly scattered. In Luciobarbus and Capoeta, there are melanophore rows on the posterior edge of the flank scales, and there are no or numerous irregularly scattered melanophores pigments behind the melanophore rows (Fig. 2). It further differs from the genus Capoeta by the last simple dorsal-fin ray strongly ossified in adult specimens (more than % 75, vs. less than % 75) (Fig. 3), a well-developed naked keel in front of dorsal-fin (except P. anamisensis, vs. absent in Capoeta) and the body with nu- merous irregular-shaped small black spots on the back and flank (except P. anamisensis, vs. absent in Capoeta, except C. pestai) (Figs 4, 5). It further differs from Luciobarbus by having the lower lip with horny layer (vs. with fleshy lips) and lips without papillae (vs. lips with papillae). Figure 3. The last simple dorsal fin rays of some Paracapoeta and Capoeta species: from left, P. trutta, 200 mm SL; P. barroisi, 190 mm SL; P. erhani, 190 mm SL; C. damascina, 205 mm SL; C. tinca, 190 mm SL; C. pestai, 195 mm SL. Table 1. Nucleotide positions for some genera within the subfamily Barbinae. Diagnostic and distinctive nucleotide positions are represented in bold font and gray background, respectively. Diagnostic nucleotide positions Genera ho Wi 2 Se" 3° A AeA GS. Ge 6.8 -O'w 8 O. Os4. 7 @B TP of esT ds 0. Oi = 6 AS Sie BiG0 pa Sa Se Bo AD FS Paracapoeta C AZ C C THA Rie | T T Capoeta T Gi | 6UOA/G «GCC CR GG ee COC OC Luciobarbus T GA/C/T T A/G CAGTL TCCCTCC Barbus Tic Ge ie ZI weeclleeetZ a Gen a eA Ca Ge TT gle> Ooo FON qQOoeFoOr FO Lok be hb Pea ee SEG. Gita So FO: Tal On PA ee 3 Oo Oe of oe See et Oe ee SP Seen A IO Oa aa eo, ea eens OO By Pe GGCCT T CH | iC T C T T TTTC G/A CT CH Tee COAG CC A TC CCGA GAT C/T C C/I CA C/A NMG C/T C/T AG TG CXC RG/A8 A ay. Oe Ee A C NMG C C/T zse.pensoft.net Turan, D. et al.: Paracapoeta, a new genus of the Cyprinidae [yi , ak ‘ i ris i YW RAK Oe : WENN GRA ub tere’. seme Ou ar «byl Figure 4. Lateral view of Paracapoeta erhani, a. Not preserved, about 155 mm SL, stream Aksu at Kuyumcular, Ceyhan drainage; b. FFR 1952, 201 mm SL, stream Aksu at Pazarcik, Ceyhan drainage; ¢. Not preserved, about 200 mm SL, stream Ucurge at Kara- isali, Seyhan drainage; d. FFR 1955, 130 mm SL, stream Cakit at Salbas (type locality of C. turani), Seyhan drainage. zse.pensoft.net Zoosyst. Evol. 98 (2) 2022, 201-212 207 Figure 5. Lateral view of some Paracapoeta species: From top, P. trutta, FFR 1873, 225 mm SL; P. barroisi, FFR 1725, 174 mm SL; P. erhani, FFR 1878, 150 mm SL. Additionally, based on the combined dataset, twenty-three diagnostic and eleven distinctive nucleotide positions for genera Paracapoeta and Capoeta are shown in bold font and on gray backgrounds respectively in Table 1. Included species. Paracapoeta anamisensis, P. bar- roisi, P. erhani, P. mandica, P. trutta. Distribution. Turkey, Iran, Iraq and Syria: Seyhan, Ceyhan and Orontes rivers, Levant drainages; Tigris, Eu- phrates, Mond and Minab River, Persian Gulf drainages. Etymology. The name of the new genus is formed by combining the words “Para” and “Capoeta’. “Para” means “beside” or “near”, and “Capoeta” is the available name of the closest genus of Paracapoeta, deriving from the local vernacular name “kapwaeti” used in Georgia and Azerbaijan. 3.4. Results of molecular data analyses Phylogenetic analyses using BI and ML methods provid- ed similar topologies for the western Palearctic Barbinae genera, with high posterior probability (PP = 0.80-1.00) and high bootstrap (BP = 94-98%) values (Fig. 6). Barbus lineage is a sister lineage to Capoeta, Paracapoeta, and Luciobarbus \ineages within the subfamily Barbinae (BP = 80%, PP = 0.94). Luciobarbus \ineage is strongly sup- ported as paraphyletic (BP = 76%, PP = 0.84) with three sublineages (sublineage I: L. subquincunciatus, sublin- eage II: L. mursa and sublineage III: other species). The presence of two lineages; “Capoeta’, and “Mesopota- mian” as the previous different species group (BP = 94%, PP = 0.96) and its sister relationships to lineage III and zse.pensoft.net 208 Turan, D. et al.: Paracapoeta, a new genus of the Cyprinidae 89/0.96 -- Capoeta um bla MH592464 - K Y065270 8410.97) | Capoeta damascina MH592451 - KY065262 85/0.92 Capoeta pyragyi MF621293 - MF62132 Capoeta caelestis MH592447 - KY065261 76/0.94 1d0/1.0— Capoeta buhsei KM590411 - JF798283 92/0.B7 Capoeta ferdowsii MF621297 - KM459663 7210.91 Capoeta coadi KU564295 - KU56430 95/1.0 Capoeta birunii MF621292 - MF621323 Capoeta shajariani MF621301 - KU167947 7410.82 Capoeta banarescui MH592441 - GQ423977 7910.89 |100/1.0 [~ Capeeta antalyensis MH592434 - GQ424021 Capoeta tinca MH592461 - GQ424006 ae 9711.0 Capoeta baliki MH592439 - GQ424011 Lineage I: Capoeta pestai MH592457 - K Y065272 Capoeta 8910.97 Capoeta bergamae MH592445 - KY065273 1D0/1.0 Capoeta aydinensis MH592437 - KY06527 Capoeta sieboldii MH592459 - KY065259 Ln Capoeita capoeta MH592449 - K Y065278 0.60 Capoeta sevangi MF664686 - JF 798302 Capoeta ekmekciae MH592454 - GQ424025 g0.947 Capoeta aculeata KM590406 - JF798265 100/1.0 Capoeta macrolepis MF664720 - MF664744 sa 10011.9L. Capoeta gracilis MF664699 - MF664729 Capoeta razii MF664707 - MF664725 Capoeta fusca MF664700 - KU312371 100/0.99 Capoeta heratensis MF664712 - KU16789 Paracapoeta erhani MH592455 - KY065282 7210.93 T00/1.0 Paracapoeta barroisi MH592443 - KY065284 Lineage II: 7410.90 Paracapoeta trutta MH592463 - KY065286 Paracapoeta 7510.92 Paracapoeta anamisensis KU312340 - KU312381 100/1.0'— Paracapoeta mandica KU312366 - KM45964 Sublineage | Luciobar bus subguincunciatus AF 145937 - ? Luciobarbus guiraonis KJ553717 - MN961182 Luciobarbus microcephalus KJ554062 - AJ698688 anit 97N0L_ fF yciobarbus graellsii KI553938 - JN049525 Luciobarbus sclateri KJ553687 - AJ698690 Luciobarbus setivimensis KJ554057 - MH042722 78/0.91 92/0.98 65/0.89 Luciobarbus bocagei KJ553712 - MN96117 90/0.96 Luciobarbus comizo KJ553752 - AF334042 7110.90 96/0.99— Luciobarbus steindachneri KJ553791 - AF04596 Luciobarbus albanicus KJ554077 - AF112126 Luciobarbus graecus KJ554075 - AF 145941 100/1.0 100/1.0 Luciobarbus esocinus KM590441 - KP712264 Sublineage II 82/0.95 Luciobarbus xanthopterus MF 599076 - AF145939 TINGS Luciobarbus longiceps KJ553925 - AF 145942 F . 80/0.87} 93/1.0 Luciobarbus pectoralis K1553955 - AF145933 Eero Luciobarbus brachycephalus KP712068 - KP712167 Luciobarbus 7610.84)) 170.89 Luciobarbus capito KM590440 - KP712171 8110.94 Luciobarbus moulouyensis KJ553952 - AF145925 100)1.0 Luciobarbus biscarensis K.1554045 - MH042693 98/0.98 Luciobarbus leptopogon KJ554037 - KY828003 94/0.96 Luciobarbus callensis KJ553762 - KY828022 Luciobarbus figuigensis KJ554042 - KU5S77514 158 100/1.0 ! Luciobarbus pallaryt KJ553895 - MH042690 Luciobarbus issiensis KJ553968 - AF 145928 100/1.0 Luciobarbus massaensis KJ553867 - MN961187 Luctobarbus magniatlantis KJ553776 - KU257530 99/1.0 || Luciobarbus ksibi KJ552356 - MN961184 : 100/1.0! Luciobarbus nasus KJ553700 - KU257539 Sublineage IT Luciobarbus mursa MF 106171 - JF798263 Barbus petenyi MF 106155 - AF090788 Barbus cyclolepis MK716237 - HQ167606 Barbus cyri MF 106165 - MK 108287 Lineage IV: 100/0.99 Barbus kubanicus MH407600 - MK.108273 Barbus 82/0.90 Barbus barbus MH407647 - KC465926 97/1.0— Barbus tauricus MK716238 - MH010350 Aulopyge huegelii KJ552727 - MT921954 Cyprinion semiplotum KJ957768 - KP712179 99/0.97 Cyprinion macrostomum MW 250387 - AF 180826 Scaphiodonichthys acanthopterus NC018789 - KP712151 Scaphiodonichthys burmanicus NC 031605 - KP712188 80/0.94 —/63 100/0.99 78/0.89 94/1.0 0.05 Figure 6. Phylogenetic tree generated based on the mitochondrial combined dataset. ML and BI methods recovered similar topolo- gies, and therefore only the ML tree is presented here. The bootstrap percentage values (BP) > 50% from ML analysis and Bayesian posterior probabilities (PP) > 0.90 are shown on the nodes (BP/PP) zse.pensoft.net Zoosyst. Evol. 98 (2) 2022, 201-212 IV (Luciobarbus + Barbus) were revealed by the present study (Fig. 6). The K2P-based distance analyses found a maximum intrageneric distance was 7.1%, in Luciobarbus (Lineage IIT) while the minimum intrageneric distance was 1.1% in Paracapoeta gen. nov. (Lineage II) (Table 2). The average intergroup genetic distance ranged from 8.02% (Paracapoeta lineage — Capoeta lineage) to 10.92% (Capoeta lineage — Barbus lineage). The second lowest intergeneric genetic distance was 8.77% (between Para- capoeta — Luciobarbus). The genetic distances between Paracapoeta and other groups varied from 8.02% to 10.66% (Table 2). Table 2. The mean genetic distances (in percentages) within and among Barbini lineages. Groups 1 2 3 4, 1 Capoeta 4.5+0.3 2 Paracapoeta 8.02+0.78 1.1+0.2 3 Luciobarbus 8.70+0.65 8.77+0.60 7.1+0.5 4 Barbus 10.92+0.92 10.66+0.77 10.7120.74 5.4+0.5 Note: Values on the diagonal indicate the mean genetic distanc- es within clades. 4. Discussion In an effort to re-evaluate the generic structure of the scrapers, Paracapoeta gen. nov., formerly known as the Mesopotamian Capoeta group, was assessed based on morphological and molecular data. In agreement with previous mitochondrial and nucle- ar markers-based phylogenies (Durand et al. 2002; Tsig- enopoulos et al. 2003; Gante 2011; Levin et al. 2012; Yang et al. 2015), Capoeta and Paracapoeta \ineages were recovered as a monophyletic group with its sister lineage, Luciobarbus (Fig. 6). Both Bayesian and likeli- hood inferences indicating the presence of the lineage II referred to as “Paracapoeta” (Paracapoeta trutta, P. er- hani, P. barroisi, P. anamisensis and P. mandica) in Fig. 6, agree with the results of previous studies (Berrebi et al. 2014; Ghanavi et al. 2016; Jouladeh-Roudbar et al. 2017; Bektas et al. 2017, 2019; Zareian et al. 2018) based on multilocus genetic datasets. Furthermore, the Paracapo- eta gen. nov. (Lineage II) was recovered as a sister lin- eage to Capoeta (Lineage I) and a monophyletic group with high nodal support (BP = 89%, PP = 0.97) (Fig. 6). According to studies using morphological characters, there are numerous apomorphic/morphological features, which could easily differentiate the Mesopotamian group (the new genus Paracapoeta) from the Capoeta genus (Fig. 6; Table 2). For a combined dataset of Cytb (735 bp) and COI (577 bp), the intergeneric genetic distances for Paraca- poeta and Capoeta lineages (mean 8.02+0.78%) repre- sent the lowest limit of the predicted intergeneric genetic distances estimated for especially the western Palearctic Barbinae genera, while it corresponds to the lower limits of intergeneric distance (8—10%; Ward et al. 2005; Hubert 209 et al. 2008; Nguyen et al. 2008; Lara et al. 2010; Perea et al. 2010; Schonhuth et al. 2012) for some closely related Cyprinid genera. On the other hand, Luciobarbus lineage exhibited the highest levels of intrageneric genetic diver- sity (7.1%, Table 2) for the combined dataset because of the presence of two distinct subclades. Since the newly uncovered lineage of Paracapoeta gen. nov. from genus Capoeta exhibited significant genetic distance in compar- ison with Capoeta species, the classification of the Mes- opotamian Capoeta group as a subgroup of Capoeta 1s unjustifiable; therefore reclassification as a genus 1s sug- gested in the present study. Consistent with previous studies (Levin et al. 2012; Doadrio et al. 2016; Simkova et al. 2017), our phyloge- netic trees revealed some inconsistencies in the current taxonomy of the tribe Barbini, such as the paraphyletic status of the genus Luciobarbus and L. subquincunciatus having a more recent common ancestor with Capoeta and Paracapoeta than the other Luciobarbus. Acklowledgements The authors would like to thank Ulgen Aytan, Basak Esensoy and Sedanur Usur (Rize) for taking the scale photos. We are also thankful to Dr. Mtinevver Oral (Rize) for discussing and editing this manuscript. References Agha GF, Abdullah SM, Ahmad MA (Unpublished[/GenBank]) DNA barcoding of the Cyprindae from Greater Zab River_Gwer in Kurd- istan Region. Alwan N (2010) Systematics, taxonomy, phylogeny and zoogeography of the Capoeta damascina species complex (Pisces: Teleostei: Cyprini- dae) inferred from comparative morphology and molecular markers. PhD Thesis Dissertation. Frankfurt University, Frankfurt, 264 pp. Alwan NH, Zareian H, Esmaeili HR (2016) Capoeta coadi, a new species of cyprinid fish from the Karun River drainage, Iran based on morphological and molecular evidences (Teleostei, Cyprini- dae). ZooKeys 16(572): 155-180. https://doi.org/10.3897/zook- eys.572.7377 Baycelebi E (2020) Distribution and diversity of fish from Seyhan, Cey- han and Orontes river systems. Zoosystematics and Evolution 96(2): 747-767. https://doi.org/10.3897/zse.96.55837 Bektas Y, Turan D, Aksu I, Ciftci Y, Eroglu O, Kalayci G, Belduz AO (2017) Molecular phylogeny of the genus Capoeta (Teleostei: Cy- prinidae) in Anatolia, Turkey. Biochemical Systematics and Ecology 70: 80-94. https://doi.org/10.1016/j.bse.2016.11.005 Bektas Y, Aksu I, Kaya C, Turan D (2019) DNA barcoding of the genus Capoeta (Actinopterygil: Cyprinidae) from Anatolia. Turkish Jour- nal of Fisheries and Aquatic Sciences 19(9): 739-752. https://doi. org/10.4194/1303-2712-v19_9 03 Benovics M, Vukié J, Sanda R, Rahmouni I, Simkova A (2020) Disentangling the evolutionary history of peri-Mediterranean cy- prinids using host-specific gill monogeneans. International Journal for Parasitology 50(12): 969-984. https://doi.org/10.1016/j.1jpa- ra.2020.05.007 zse.pensoft.net 210 Berrebi B, Chenuil A, Kotlik P, Machordom A, Tsigenopoulos CS (2014) Professor Carlos Almaga (1934—2010) - Estado da Arte em Areas Cienti-cas que Desenvolveu. Museu Nacional de Historia Natural e da Ciéncia, Lisboa, 29-55. Brahimi A, Tarai N, Benhassane A, Henrard A, Libois R (2016) Genetic and morphological consequences of Quaternary glaciations: A rel- ic barbel lineage (Luciobarbus pallaryi, Cyprinidae) of Guir Basin (Algeria). Comptes Rendus Biologies 339(2): 83-98. https://doi. org/10.1016/j.crvi.2015.12.003 Brahimi A, Freyhof J, Henrard A, Libois R (2017) Luciobarbus che- lifensis and L. mascarensis, two new species from Algeria (Teleostei: Cyprinidae). Zootaxa 4277(1): 32-50. https://doi.org/10.11646/zoo- taxa.4277.1.3 Buonerba L, Pompei L, Lorenzoni M (2013) First record of Iberian bar- bel Luciobarbus graellsii (Steindachner, 1866) in the Tiber River (Central Italy). BioInvasions Records 2(4): 297-301. https://doi. org/10.3391/bir.2013.2.4.06 Buonerba L, Zaccara S, Delmastro GB, Lorenzoni M, Salzburger W, Gante HF (2015) Intrinsic and extrinsic factors act at different spatial and tem- poral scales to shape population structure, distribution and speciation in Italian Barbus (Osteichthyes: Cyprinidae). Molecular Phylogenetics and Evolution 89: 115-129. https://doi.org/10.1016/j.ympev.2015.03.024 Doadrio I, Carmona JA, Machordom A (2002) Haplotype Diversity and Phylogenetic Relationships Among the Iberian Barbels (Barbus, Cy- prinidae) Reveal Two Evolutionary Lineages. Journal of Heredity 93(2): 140-147. https://doi.org/10.1093/jhered/93.2.140 Doadrio I, Casal-Lépez M, Perea S, Yahyaoui A (2016) Taxonomy of theophilic Luciobarbus Heckel, 1842 (Actinopterygii, Cyprinidae) from Morocco with the description of two new species. Graellsia 72(1): e039. https://doi.org/10.3989/graellsia.2016.v72.153 Durand JD, Tsigenopoulos CS, Unlwt E, Berrebi P (2002) Phylogeny and Biogeography of the family Cyprinidae in the Middle East inferred from cytochrome b DNA — evolutionary significance of this region. Molecular Phylogenetics and Evolution 22(1): 91-100. https://doi. org/10.1006/mpev.2001.1040 Elp M, Osmanoglu MI, Kadak AE, Turan D (2018) Characteristics of Ca- poeta oguzelii, a new species of Cyprinid fish from the Ezine Stream, Black Sea basin, Turkey (Teleostei: Cyprinidae). Zoology in the Middle East 64(2): 102-111. https://doi.org/10.1080/09397140.2018.1442295 Erk’akan F, Ozdemir F (2011) Revision of the fish fauna of the Seyhan and Ceyhan River Basins in Turkey. Research Journal of Biological Sciences 6(1): 1-8. https://doi.org/10.3923/rjbsci.2011.1.8 Gante HF (2011) Diversification of Circum-Mediterranean Barbels. In: Grillo O, Venora G (Eds) Changing Biodiversity in Changing Envi- ronment. Rijeka, CR: Intech, 283-298. Geiger MF, Herder F, Monaghan MT, Almada V, Barbieri R, Bariche M, Berrebi P, Bohlen J, Casal-Lopez M, Delmastro GB, Denys GP, Dettai A, Doadrio I, Kalogianni E, Karst H, Kottelat M, Kovaci¢ M, Laporte M, Lorenzoni M, Marti¢ Z, Ozulus M, Perdices A, Perea S, Persat H, Porcelotti S, Puzzi C, Robalo J, Sanda R, Schneider M, Slechtova V, Stoumboudi M, Walter S, Freyhof J (2014) Spatial het- erogeneity in the Mediterranean Biodiversity Hotspot affects barcod- ing accuracy of its freshwater fishes. Molecular Ecology Resources 14(6): 1210-1221. https://doi.org/10.1111/1755-0998.12257 Ghanavi HR, Gonzalez EG, Doadrio I (2016) Phylogenetic relation- ships of freshwater fishes of the genus Capoeta (Actinopterygii, Cy- prinidae) in Iran. Ecology and Evolution 6(22): 8205-8222. https:// doi.org/10.1002/ece3.2411 zse.pensoft.net Turan, D. et al.: Paracapoeta, a new genus of the Cyprinidae Guc¢lt SS, Kalayci G, Kuguk F, Turan D (2020) Barbus xanthos, a new bar- bel from the Southern Aegean basin (Teleoste1: Cyprinidae). Journal of Fish Biology 96(6): 1309-1319. https://do1.org/10.1111/jfb. 14259 Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/96/NT. Nucleic Acids Symposium Series 41: 95-98. Hashemzadeh Segherloo I, Abdoli A, Bernatchez L, Khajeh P, Puria M, Mobasherizadeh Z, Tabatabaei SN, Eagderi S, Hallerman E, Badri Fariman M, Golzarianpour K, Pourahmad R (Unpublished[/Gen- Bank]) Phylogenetic relationships of the Iranian Barbels and possi- ble scenarios for Barbin fish spread. Hebert PDN, Ratnasingham S, Dooh R (2004) Barcodes of Life. http:// www. barcodinglife.com/ Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E, Burridge M, Watkinson D, Dumont P, Curry A, Bentzen P, Zhang J, April J, Ber- natchez L (2008) Identifying Canadian Freshwater Fishes through DNA Barcodes. PLoS ONE 3(6): e2490. https://doi.org/10.1371/ journal.pone.0002490 Johns GC, Avise JC (1998) A comparative summary of genetic distanc- es in the vertebrates from the mitochondrial cytochrome b gene. Molecular Biology and Evolution 15(11): 1481-1490. https://doi. org/10.1093/oxfordjournals.molbev.a025875 Jouladeh-Roudbar A, Eagderi S, Ghanavi HR, Doadrio I (2017) A new species of the genus Capoeta Valenciennes, 1842 from the Caspian Sea basin in Iran (Teleostei, Cyprinidae). ZooKeys 682: 137-155. https://doi.org/10.3897/zookeys.682.12670 Kartavtsev YP (2009) Analysis of sequence diversity at mitochondrial genes on different taxonomic levels. Chapter 1. Genetic diversity. In: Mahoney CL, Springer DA (Eds) Applicability of DNA based distance data in genetics of speciation and phylogenetics. Nova Sci. Publishers Inc., New York, 1—50. Kartavtsev YP (2011) Divergence at Cyt-b and Co-1 mtDNA genes on different taxonomic levels and genetics of speciation in animals. Mitochondrial DNA 22(3): 55-65. https://doi.org/10.3109/194017 36.2011.588215 Kartavtsev YP, Lee JS (2006) Analysis of nucleotide diversity at genes Cyt-b and Co-1 on population, species, and genera levels. Applicability of DNA and allozyme data in the genetics of speciation. Russian Journal of Genetics 42: 437-461. https://doi.org/10.1134/S10227954060400 16 Kartavtsev YP, Batishcheva NM, Bogutskaya NG, Katugina AO, Han- zawa N (2017) Molecular Systematics Research, DNA Barcoding of Altai Osmans, Oreoleuciscus (Pisces, Cyprinidae, Leuciscinae), and Nearest Relatives, Inferred from Sequences of Cytochrome b (Cyt-b), Cytochrome Oxidase c (Co-1), and Complete Mitochondri- al Genome. Mitochondrial DNA 28(4): 502-517. https://doi.org/10. 3109/24701394.2016.1149822 Kaya C (2019) Taxonomic revision of the species belong to genus Capoeta distributed in Turkey. PhD Thesis. Recep Tayyip Erdogan University, Institute of Science and Technology, Rize, Turkey, 126 pp. [in Turkish] Kaya C, Bay¢elebi E, Turan D (2020) Taxonomic assessment and distribu- tion of fishes in upper Kura and Aras river drainages. Zoosystematics and Evolution 96(2): 325-344. https://doi.org/10.3897/zse.96.52241 Keskin E (Unpublished[/GenBank]) Phylogenetic Relationship Among Some Endemic and Endangered Cypriniformes species in Turkey. Khaefi R, Esmaeili HR, Geiger MF, Eagderi S (2017) Taxonomic review of the cryptic Barbus lacerta species group with description of a new species (Teleostei: Cyprinidae). FishTaxa: Journal of Fish Taxonomy 2(2): 90-115. https://fishtaxa.com/index. php/ft/article/view/2-2-5/88 Zoosyst. Evol. 98 (2) 2022, 201-212 Khaefi R, Esmaeili HR, Chermahini MA (2018) Natural hybridization of Luciobarbus barbulus x Luciobarbus kersin and Luciobarbus barbulus x Luciobarbus xanthopterus in the Persian Gulf Basin. Turkish Journal of Fisheries and Aquatic Sciences 18(12): 1399- 1407. https://do1.org/10.4194/1303-2712-v18_ 12 08 Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Publications Kottelat, 646 pp. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Mo- lecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547-1549. https://do1. org/10.1093/molbev/msy096 Lara A, Ponce de Leon JL, Rodriguez R, Casane D, Coté G, Bernatchez L, Garcia-Machado E (2010) DNA barcoding of Cuban freshwater fishes: Evidence for cryptic species and taxonomic conflicts. Mo- lecular Ecology Resources 10(3): 421-430. https://doi.org/10.1111/ j.1755-0998.2009.02785.x Levin BA, Freyhof J, Lajbner Z, Perea S, Abdoli A, Gaffaroglu M, Ozulug M, Rubenyan HR, Salnikov RB, Doadrio I (2012) Phylogenetic relationships of the algae scraping cyprinid ge- nus Capoeta (Teleostei: Cyprinidae). Molecular Phylogenet- ics and Evolution 62(1): 542-549. https://doi.org/10.1016/j. ympev.2011.09.004 Levin BA, Prokofievc AM, Roubenyan HR (2019) A New Species of Algae Eaters Capoeta kaput sp. nov. (Teleostei, Cyprinidae) from Transcaucasia. Inland Water Biology 12(1): 32-41. https://doi. org/10.1134/S1995082919010139 Ludo$ki J, Francuski L, Luka¢é M, Deki¢ R, Milankov V (2020) Toward the conservation of the endemic monotypic fish genus Aulopyge from the Balkan Dinaric karst: Integrative assessment of introduced and natural population. Ecology and Evolution 11(2): 688-699. https://doi.org/10.1002/ece3.7108 Meraner A, Venturi A, Ficetola GF, Rossi S, Candiotto A, Gandolfi A (2013) Massive invasion of exotic Barbus barbus and introgres- sive hybridization with endemic Barbus plebejus in Northern Ita- ly: Where, how and why? Molecular Ecology 22(21): 5295-5312. https://doi.org/10.1111/mec.12470 Mesquita N, Cunha C, Carvalho GR, Coelho MM (2007) Compar- ative phylogeography of endemic cyprinids in the south-west Iberian Peninsula: Evidence for a new ichthyogeographic area. Journal of Fish Biology 71(sa): 45-75. https://doi.org/10.1111/ j.1095-8649.2007.01518.x Miya M (Unpublished[/GenBank]) Whole mitochondrial genome se- quences in Cypriniformes. Miya M, Takeshima H, Endo H, Ishiguro N, Inoue J, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: A new perspective based on 100 complete mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 26(1): 121-138. https://doi. org/10.1016/S1055-7903(02)00332-9 Nguyen TTT, Na-Nakorn U, Sukmanomon S, ZiMing C (2008) A study on phylogeny and biogeography of mahseer species (Pisces: Cyprin- idae) using sequences of three mitochondrial DNA gene regions. Molecular Phylogenetics and Evolution 48(3): 1223-1231. https:// doi.org/10.1016/j.ympev.2008.01.006 Ozdemir F (2013) Tirkiye’deki Capoeta (Teleostei: Cyprinidae) Cin- sine Ait Tur ve Altttirlerin Klasik ve Molektler Sistematik Yontem- ler Kullanilarak Revizyonu. Doktora Tezi. Hacettepe Universitesi, Fen Bilimleri Enstitist, Ankara, Turkiye, 157 pp. 211 Ozpicak M, Polat N (2019) Determination of genetic structure in Barbus tauricus Kessler, 1877 populations inhabiting a few streams along the Black Sea Region (Turkey) inferred from mtDNA Cytochrome b gene sequence analysis. Ege Journal of Fisheries and Aquatic Sci- ences 36(1): 1-11. https://doi.org/10.12714/egejfas.2019.36.1.01 Ozulug M, Freyhof J (2008) Capoeta turani, a new species of barbel from River Seyhan, Turkey (Teleostei: Cyprinidae). Ichthyological Exploration of Freshwaters 19: 289-296. Perea S, Bohme M, Zupancic P, Freyhof J, Sanda R, Ozulug M, Ab- doli A, Doadrio I (2010) Phylogenetic relationships and biogeo- graphical patterns in Circum-Mediterranean subfamily Leucisci- nae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evolutionary Biology 10(1): e265. https://doi. org/10.1186/1471-2148-10-265 Posada D (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25(7): 1253-1256. https://doi.org/10.1093/ molbev/msn083 Rahman S, Barua E, Das DN, Dutta A, Kalita MC (Unpublished[/Gen- Bank]) DNA barcoding in threatened Assamese Kingfish, Cyprinion semiplotum (McClelland, 1839). Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) Mrbayes 3.2: Efficient Bayesian phylogenetic inference and model choice across large model space. Systematic Biology 61(3): 539-542. https://doi. org/10.1093/sysbio/sys029 Schonhuth S, Hillis DM, Neely DA, Lozano-Vilano L, Perdices A, Mayden RL (2012) Phylogeny, diversity, and species delimitation of the North American Round-Nosed Minnows (Teleostei: Dionda), as inferred from mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution 62(1): 427-446. https://doi. org/10.1016/j.ympev.2011.10.011 Simkova A, Benovics M, Rahmouni I, Vuki¢ J (2017) Host-specif- ic Dactylogyrus parasites revealing new insights on the historical biogeography of Northwest African and Iberian cyprinid fish. Par- asites & Vectors 10(1): e589. https://doi.org/10.1186/s13071-017- 2521-x Taylor WR, Van Dyke GC (1985) Revised procedures for staining and clearing small fishes and other vertebrates for bone and cartilage study. Cybium 9: 107-119. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight ma- trix choice. Nucleic Acids Research 22(22): 4673-4680. https://doi. org/10.1093/nar/22.22.4673 Touil A, Casal-Lopez M, Bouhadad R, Doadrio I (2019) Phylogeny and phylogeography of the genus Luciobarbus (Haeckel, 1843) in Alge- ria inferred from mitochondrial DNA sequence variation. Mitochon- drial DNA. Part A, DNA Mapping, Sequencing, and Analysis 30(2): 332-344. https://doi.org/10.1080/24701394.2018. 1526928 Tsigenopoulos CS, Berrebi P (2000) Molecular phylogeny of North Mediterranean freshwater barbs (Genus Barbus: Cyprinidae) in- ferred from cytochrome b sequences: biogeographic and systematic implications. Molecular Phylogenetics and Evolution 14(2): 165— 179. https://doi.org/10.1006/mpev.1999.0702 Tsigenopoulos CS, Durand JD, Unlii E, Berrebi P (2003) Rapid radi- ation of the Mediterranean Luciobarbus species (Cyprinidae) after the Messinian salinity crisis of the Mediterranean Sea, inferred from mitochondrial phylogenetic analysis. Biological Journal of zse.pensoft.net 212 the Linnean Society. Linnean Society of London 80(2): 207—222. https://doi.org/10.1046/j.1095-8312.2003.00237.x Turan C (2008) Molecular systematics of the Capoeta (Cypriniformes: Cyprinidae) species complex inferred from mitochondrial 16S rDNA sequence data species. Acta Zoologica Cracoviensia - Series A Ver- tebrata 51(1—2): 1-14. https://doi.org/10.3409/azc.51a_1-2.1-14 Turan D, Kottelat M, Ekmek¢i FG, Imamoglu HO (2006a) A review of Capoeta tinca, with descriptions of two new species from Turkey (Teleostei: Cyprinidae). Revue Suisse de Zoologie 113: 421-436. https://doi.org/10.5962/bhl.part.80358 Turan D, Kottelat M, Kirankaya SG, Engin S (2006b) Capoeta ekmekciae, a new species of cyprinid fish from northeastern Anatolia (Teleostet: Cyprinidae). Ichthyological Exploration of Freshwaters 17: 147—156. Turan D, Kottelat M, Ekmekgi FG (2008) Capoeta erhani, a new spe- cies of Cyprinid fish from Ceyhan River, Turkey (Teleostei: Cyprin- idae). Ichthyological Exploration of Freshwaters 19: 263-270. Turan D, Kiictik F, Kaya C, Gti¢li SS, Bektas Y (2017) Capoeta aydin- ensis, a new species of scraper from southwestern Anatolia, Turkey (Teleostei: Cyprinidae). Turkish Journal of Zoology 41: 436-442. https://doi.org/10.3906/zoo-1510-43 Turan D, Kaya C, Geiger M, Freyhof J (2018) Barbus anatolicus, a new barbel from the Kizilirmak and Yesilirmak River drainages in north- ern Anatolia (Teleostei: Cyprinidae). Zootaxa 4461(4): 539-557. https://doi.org/10.11646/zootaxa.4461.4.5 Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences 360(1462): 1847-1857. https://doi.org/10.1098/rstb.2005.1716 Yang JQ, Cheng HL, Wu CY, Tsai KC, Chiang HC, Weng CW, Lin HD (2013) Complete mitochondrial genome of Scaphiodonichthys acanthopterus (Cypriniformes, Cyprinidae). Mitochondrial DNA 24(2): 108-110. https://doi.org/10.3109/19401736.2012.726622 Yang L, Sado T, Vincent Hirt M, Pasco-Viel E, Arunachalam M, L1 J, Mayden RL (2015) Phylogeny and polyploidy: Resolving the clas- sification of Cyprinine fishes (Teleostei: Cypriniformes). Molecular Phylogenetics and Evolution 85: 97—116. https://doi.org/10.1016/). ympev.2015.01.014 Zardoya R, Doadrio I (1998) Phylogenetic relationships of Iberian cy- prinids: Systematic and biogeographical implications. Proceedings. Biological Sciences 265(1403): 1365-1372. https://doi.org/10.1098/ rspb.1998.0443 zse.pensoft.net Turan, D. et al.: Paracapoeta, a new genus of the Cyprinidae Zardoya R, Doadrio I (1999) Molecular evidence on the evolution- ary and biogeographical patterns of European cyprinids. Journal of Molecular Evolution 49(2): 227-237. https://doi.org/10.1007/ PL00006545 Zareian H, Esmaeili HR (2017) Mitochondrial phylogeny and taxo- nomic status of the Capoeta damascina species group (Actinopte- rygii: Cyprinidae) in Iran with description of a new species. Iranian Journal of Ichthyology 4(3): 231-269. https://doi.org/10.22034/ij1. v4i3.239 Zareian H, Esmaeili HR, Freyhof J (2016) Capoeta anamisensis, a new species from the Minab and Hasan Langhi River drainages in Iran (Teleostei: Cyprinidae). Zootaxa 4083(1): 126-142. https://doi. org/10.11646/zootaxa.4083.1.7 Zareian H, Esmaeili HR, Gholamhosseini A, Japoshvili B, Ozulug M, Mayden RL (2018) Diversity, mitochondrial phylogeny, and ich- thyogeography of the Capoeta capoeta complex (Teleostei: Cy- prinidae). Hydrobiologia 806(1): 363-409. https://doi.org/10.1007/ $10750-017-3375-0 Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Dissertation, The University of Texas at Austin. http://hdl.handle.net/2152/2666 Supplementary material | Table SI Authors: Davut Turan, Cuneyt Kaya, Ismail Aksu, Yusuf Bektas Data type: excel file Explanation note: List of Genbank accession numbers of sequences used in molecular analyzes in this study. Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons. org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow us- ers to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited. Link: https://do1.org/10.3897/zse.98.81463.suppl1