BioRisk 4( | ): 2 I 9-266 (20 l 0) cre is ater iccess journa 1] doi: 10.3897/biorisk.4.64 RESEARCH ARTICLE B | O R IS k www.pensoftonline.net/biorisk Weevils and Bark Beetles (Coleoptera, Curculionoidea) Chapter 8.2 Daniel Sauvard', Manuela Branco’, Ferenc Lakatos?, Massimo Faccoli*, Lawrence R. Kirkendall? | INRA, UR633 Zoologie Forestiére, 2163 Avenue de la Pomme de Pin, CS 40001 ARDON, 45075 Orléans Cedex 2, France 2 Centro de Estudos Florestais, Instituto Superior de Agronomia, Technical University of Lis- bon, Tapada da Ajuda, 1349-017, Lisboa, Portugal 3 University of West-Hungary, Institute of Silviculture and Forest Protection, Bajcsy-Zs. u. 4., H-9400 Sopron, Hungary 4 Department of Environmental Agronomy and Crop Sciences, Viale dell Universita 16, 35020 Legnaro (PD), Italy 5 University of Bergen, Biology Institute, Postbox 7803, N-5020, Bergen, Norway Corresponding author: Daniel Sauvard (Daniel.Sauvard@orleans.inra.fr) Academic editor: Alain Roques | Received 16 March 2010 | Accepted 25 May 2010 | Published 6 July 2010 Citation: Sauvard D et al. (2010) Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2. In: Roques A et al. (Eds) Alien terrestrial arthropods of Europe. BioRisk 4(1): 219-266. doi: 10.3897/biorisk.4.64 Abstract We record 201 alien curculionoids established in Europe, of which 72 originate from outside Europe. Aliens to Europe belong to five families, but four-fifths of them are from the Curculionidae. Many families and subfamilies, including some species-rich ones, have few representatives among alien curculionoids, whereas some others are over-represented; these latter, Dryophthoridae, Cossoninae and specially Scolyti- nae, all contain many xylophagous species. The number of new records of alien species increases continu- ously, with an acceleration during the last decades. Aliens zo Europe originate from all parts of the world, but mainly Asia; few alien curculionoids originate from Africa. Italy and France host the largest number of alien to Europe. The number of aliens per country decreases eastwards, but is mainly correlated with importations frequency and, secondarily, with climate. All alien curculionoids have been introduced acci- dentally via international shipping. Wood and seed borers are specially liable to human-mediated dispersal due to their protected habitat. Alien curculionoids mainly attack stems, and half of them are xylophagous. The majority of alien curculionoids live in human-modified habitats, but many species live in forests and other natural or semi-natural habitats. Several species are pests, among which grain feeders as Sitophilus spp. are the most damaging. Copyright D. Sauvard. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 220 Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) Keywords Europe, Coleoptera, Curculionoidea, Curculionidae, alien species, invasive species, xylophagy, seed feeder 8.2.1. Introduction The superfamily Curculionoidea encompasses the weevils and the bark and ambrosia beetles; here we will use ,,weevils“ to refer to the entire superfamily. It is the most species-rich beetle clade, with more than 60,000 described species (Oberprieler et al. 2007). Four fifths of all weevils are in the family Curculionidae. Curculionoids are distributed worldwide, everywhere vegetation is found. This is a rather homogeneous group, its members being generally easily recogniza- ble despite various aspects. Adults are primarily characterized by the head being pro- duced into a rostrum (snout) to which the antennae and mouthparts are attached. ‘The rostrum is highly variable in size and shape, varying from as long as the body to very short or absent. Larvae, generally white and C-shaped, are catepillar-like (eruciform), soft-bodied, with legs being either vestigial or (usually) absent, except in some species of the primitive family Nemonychidae. Except for a few rare species, adults and larvae of Curculionoidea are phytopha- gous. Larvae are mainly endophytic or subterranean. Weevils feed on a large varie- ty of plants, attacking all parts. Many species are important pests for agriculture or forestry. The Macaronesian islands’ pose a special problem. While many of their weevils are only found on single islands or groups of islands and are thus clearly endemic, other species are shared between island groups, or between Macaronesian islands and the continental Europe or North Africa. For example, a number of scolytines speciali- zed to Euphorbia are shared between the Canary Islands and Madeira, or between the Canary Islands and the Mediterranean and North Africa (Table 8.2.1). Given the dif ficulties involved with dispersal by these tiny insects over vast expanses of salt water, we have chosen to interpret the distributions of non-endemic species as resulting from recent human transport. We are well aware that rare instances of natural dispersal do occur, at least on evolutionary time scales: after all, such natural dispersal has resulted in many instances of well documented species radiations (Emerson 2008, Juan et al. 2000). Because of the inherent uncertainty in distinguishing between recent anthropo- genic spread and older natural dispersal, we classify nonendemic species of these archi- pelagos as presumed aliens (they are indicated in tables 8.2.1 & 8.2.2). Without contra- dictory data, we consider: 1) species known from Europe and found on a Macaronesi- an island as presumed alien in Europe; 2) species known from Africa (and not from Eu- rope) and found in Macaronesia as presumed alien to Europe; 3) species from the Cana- ry Islands which also occur further north on Madeira or the Azores as presumed alien ' We include in our coverage the Macaronesian islands associated with European countries (Madeira, the Azores, the Canary Islands); we exclude the Cape Verde Islands. Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 221 from the Canary Islands and presumed alien to Europe. Presumed alien are often consi- dered below separately than others, due to the uncertainty attached to their status and the geographical and biogeographical differences between Macaronesia and Europe. We consider that 201 alien curculionoids currently live in Europe, of which 72 species originate outside of Europe (aliens to Europe, Table 8.2.1; 20 presumed alien are included) and 129 species originate from other parts of Europe (aliens in Europe, Table 8.2.2; 60 presumed alien are included)’. Except where otherwise noted, our dis- cussion of exotic curculionoids only pertains to alien to Europe. 8.2.2. Taxonomy and biology The systematics of the superfamily Curculionoidea have long been controversial, in part due to the enormous number of taxa involved, in part due to extensive parallel evolution arising from the similar ecologies of unrelated clades (Alonso-Zarazaga and Lyal 1999, Oberprieler et al. 2007). We follow here the current classification of Fauna Europaea (Alonso-Zarazaga 2004), which notably considers the traditional Platypodi- dae and Scolytidae families as subfamilies of Curculionidae. About 5,000 native curculionoids live in Europe, distributed among 13 families. Comparatively, the alien entomofauna is very limited with only 72 established species recorded at this time (Fig. 8.2.1). These alien species belongs to five families, all of which have native representatives. Anthribidae. Principally present in tropical areas, these largely fungus-feeding curcu- lionoids generally live primarily in fungus-infested wood. There is only one alien species in Europe, Araecerus coffeae, which is a seed feeder, an exceptional biology in this family. Apionidae. Characterized in part by their non-geniculate antennae and endophy- tous larvae, these tiny curculionoids are represented in Europe by three alien species, all living on alien ornamental Alcea (Malvaceae). Dryophthoridae. ‘This family contains large weevils mainly living on woody mo- nocotyledons. Alien dryophthorids consist of woody monocotyledons borers and seed feeders. They are particularly numerous compared with the world fauna (Fig. 8.2.1) and especially with respect to the few native species in Europe (8 aliens vs 6 natives, according to Fauna Europaea (Alonso-Zarazaga 2004)). This situation could be ex- plained first by the few woody monocotyledons in Europe-native flora in contrast with the several woody monocotyledons introduced in Europe for ornamental or agricul- tural purpose. The human-mediated transport of seeds, and consequently seed feeders, is probably a further explanation. 2 Other aliens have been recorded, but have not been taken into account here because their establish- ment have not been confirmed. We have also excluded some possible presumed aliens due to the uncer- tainty about their distribution. 222. Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) % species % species 50 40 30 20 10 0 0 10 20 30 40 50 — EEE | en Scolytinae fs Cossoninae 2 Curculioninae eI Cyclominae 2075 ee Entiminae 7100 = Molytinae Pri Hyperinae i Cryptorhynchinae uw“ @ Lixinae 43 Platypodinae on = Baridinae a1 witli Ceutorhynchinae a Conoderinae ) oO, Mesoptiliinae _— World fauna 20 1 Other Curculionidae Alien species I Native European fauna - ce Dryophthoridae on Apionidae 360 Anthribidae “i Erirhinidae (200 Attelabidae 0 Brentidae aa Rhynchitidae 7 Other families Figure 8.2.1. Taxonomic overview of Curculionoidea species alien to Europe compared to the native European fauna and to the world fauna. Right- Relative importance of the Curculionoidae families and subfamilies in the alien entomofauna is expressed as percentage of species in the family/ subfamily compared to the total number of alien Curculionidea in Europe. Subfamilies of Curculionidae and other families of Curculionidea are presented in a decreasing order based on the number of alien species. The number over each bar indicates the total number of alien species observed per family/ subfamily. Left- Relative importance of each family/ subfamily in the native European fauna of Curculionidea and in the world fauna expressed as percentage of species in the family/ subfamily compared to the total number of Curculionidea in the corresponding area. The number over each bar indicates the total number of species observed per family/ subfamily in Europe and in the world, respectively Erirhinidae. Curculionoids of this small family mainly live on herbaceous mono- cotyledons, often aquatic ones. With two alien species, they are relatively well repre- sented in Europe. Curculionidae. This huge family encompasses more than 80% of weevils and no- tably includes the bark beetles and pinhole borers (Scolytinae and Platypodinae). Cur- culionids have a large variety of habits, but are all phytophagous. The European species are distributed in 16 subfamilies. The alien species belong to 10 subfamilies, all having native representatives. Many subfamilies, including the world’s largest (Entiminae, Curculioninae and Molytinae), are under-represented among alien curculionoids com- pared with their world importance in the superfamily (Fig. 8.2.1). On the other hand, the subfamily Cossoninae, which mainly contains wood-boring weevils, are over-repre- sented, but the most remarkable result is the over-representation of Scolytinae. Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 223 Scolytinae are small, cylindrical wood borers, without a rostrum or with only a very reduced one; they include some of the most important forest pests in the world. The majority are phloeophagous, breeding in the inner bark. Most others are xylo- mycetophagous, feeding on symbiotic fungi which they cultivate in tunnels in the wood (ambrosia beetles). The scolytines represent about 10% of world curculionoids but almost half of curculionoids alien to Europe. Alien bark beetles represent more than 12% of all bark beetle species in Europe. The over-representation of Scolytinae is related to the frequency with which they are transported in wooden packing material, pallets, and timber (Haack 2001, 2006, Brockerhoff et al. 2006). All stages of these beetles can survive long voyages well, since both adults and larvae are in tunnels under bark or in wood and not directly exposed to temperature extremes or dessication. The importance of a stable, protected microenvironment is illustrated by the high preva- lence of ambrosia beetles in the Scolytinae plus Platypodinae (35%) among successful aliens to Europe (Table 8.2.1), compared with the prevalence of ambrosia beetles in these groups in temperate climates generally (below 20%: Kirkendall 1993). The estab- lishment of ambrosia beetles in Europe is further facilitated by polyphagy (11/12 spp.) and inbreeding (10/12 spp.), as is generally believed to be the case for ambrosia beetles globally (Kirkendall 1993, Haack 2001). The curculionoids alien iz Europe are more representatives of Europe-native fauna. Scolytines (25% of aliens im Europe) are also over-represented compared with their importance among European curculionoids (5%), but not cossonines (3% of aliens in Europe). On the other hand, Entiminae (26% of alien in Europe, mostly Otiorhynchus and Sitona) are under-represented compared with the European fauna, but less so than among aliens to Europe. 8.2.3. Temporal trends Of the five families considered in this chapter, the first information concerning an alien species in Europe was probably the description by Ratzeburg in 1837 of Xyleborus pfeilii based on specimens from southern Germany’. The curculionid Pentarthrum hut- toni was introduced to Great Britain from New Zealand in 1854, and has subsequently become naturalized in many European countries (Table 8.2.1). Only three other intro- duced species were recorded in the second half of 19" century. With the beginning of the 20" century, alien species began to be discovered more frequently, though this was limited to sporadic introductions (about 2 species per de- cade) confined to southern Europe — which perhaps provided more favourable climatic conditions — and along the main routes of international trade. Since the 1920s the rate of new introductions has slightly increased (Fig. 8.2.2), with a mean of nearly three species every decade, but remaining stable until middle of 1970s. Despite the European laws regulating the trade of plant material, the number of records of new exotic species introduced to Europe has increased rapidly since 1975 and especially since 2000, reaching worrying levels with an average of more than one 224 Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) Mean number of new alien species recorded per year during the period 0 0.4 0.8 1.2 1.6 2 1492-1849 | | 1850-1899 ff 4 1900-1924 i 5 1925-1949 i 7 1950-1974 7 1975-1999 (i 9 2000-2009 - TT ' Time period Figure 8.2.2. Temporal trend in establishment of Curculionoidea species alien to Europe from 1492 to 2010. Presumed alien species are excluded. The number besides each bar indicates the absolute number of new records during the time period. For the introduction year of each species see Table 8.2.1. species per year (16 new species from 2000 to 2009: Table 8.2.1), and a peak of five new species per year in 2004 (8 species in 2003-2004). It is too early to say if the rela- tively low number of establishments observed since 2005 will be confirmed or is only due to stochastic variations. However, if the trend towards increasing rates of introduc- tion continues unabated, in a few decades the mean number of alien species becoming established in Europe could reach several per year. The temporal trend of alien curculionoids establishment is very similar to that observed in Europe for all alien terrestrial invertebrates (Roques et al. 2009, but see also Smith et al. 2007 for contradictory (more limited) data). On the other hand, this trend varies among weevils. Aliens from Asia follow the general trend (half of them have been recorded after 1975, a third after 2000), but the increasing of estab- lishment rate is faster for those from North and South America (two-thirds of them have been recorded after 2000) while it is slower for those from others continents (half of them have been recorded before 1950, and none after 2000). Regarding feeding habits, all aliens follow the general trend except those with spermatophagous larvae, which show no trend. This particularity of the formers seems related to the oldness and intensity of human-mediated seed transport. Unfortunately, for many alien species spread over large parts of Europe, data on the place and time of introduction are lacking, and generally the data on time of arrival of exotic species are very weak. Often, introduced species — especially those which are not pests — are first noticed only many years after arrival, or following subsequent and repeated introductions. As prompt communication of new findings is extremely im- portant for the application of specific monitoring and eradication programs, the poor quality of these data is a major obstacle to aliens management. Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 225 8.2.4. Biogeographic patterns Origin of alien species All presumed aliens probably come from Africa (among which 35% from the subregion Macaronesia). These species are not included in further discussion due to uncertainty of their status and specially because their arrival modes have probably been different from other aliens due to proximity of the source region. A probable region of origin could be specified for 51 of the 52 curculionoid spe- cies alien zo Europe. ‘There is one species, Sitophilus zeamais (Dryophthoridae), whose region of origin is uncertain (cryptogenic). Cryptogenic species are thus rare in this group compared to all alien terrestrial invertebrates (14%: Roques et al. 2009). Sitophilus zeamais is associated with maize crops, Zea mays, and feeds on maize grain stores, and it is likely that this species is American. More than one-third (40%) of the exotic curculionoid species originate from Asia. Central and South America represents the second most important region of origin, with 19% of the species coming from this area. North America and Australasia both represent 14% of the contributing regions. Africa is a minor region of origin (6%), and the remaining species (6%) arrived from tropical or subtropical areas but the region of origin could not be precisely identified (Figure 8.2.3). This distribution is rather similar to that for all alien terrestrial invertebrates (Roques et al. 2009). The main differences are the under-representation of African aliens (6% vs. 12%) and the over- representation of South American (19% vs. 11%) and Australasian (14% vs. 7%) ones. A rather surprising result is that species originated from areas with tropical or subtropi- cal climates all around the world represent about half of alien curculionoids. Thirteen out of the twenty-one alien species originating from Asia are from the family Curculionidae, twelve species belonging to the subfamily Scolytinae and one species to the subfamily Cyclominae. Other families consist of Dryophthoridae (4 spp.), Apionidae (3 spp.) and Anthribidae (1 sp.). Scolytines originate from very dif- ferent parts of this large continent. For example Cyclorhipidion bodoanus is native to Siberia and temperate northeast Asia, Phloeosinus rudis to Japan, and the three species of the genus Xylosandrus to Southeast Asia. In contrast, all the weevils of the Dryophthoridae family originate from tropical Asia. This group includes the banana root weevil Cosmopolites sordidus, the coconut weevil Diocalandra frumenti, the palm weevil Rhynchophorus ferrugineus and the rice weevil Sitophilus oryzae. The introduced apionids, Alocentron curvirostre, Aspidapion validum and Rhopalapion longirostre, all feed on flowers and seeds of Alcea rosea and other Malvaceae species (Bolu and Lega- lov 2008); these all originate from central Asia. Finally, the anthribid Avaecerus coffeae originates from India. The ten curculionoid species coming from Central and South America consist of curculionids (8 spp.) and dryophthorids (2 spp.). Curculionids originating from this region are as highly diverse taxonomically (they are distributed in six subfamilies) as in feeding habits. ‘The native ranges of many species largely extend through the continent 226 Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) North Ameri | ae eye Central and South America 19.2% Tropical, subtropical 5.8% Cryptogenic 1.9% Africa 5.8% Australasia _ 13.5% Asia 40.4% Figure 8.2.3. Origin of Curculionoidea species alien to Europe. Presumed alien species are excluded. (including sometimes part of North America), though those of others are more narrow as for Rhyephenes humeralis (central Chile and neighboughring area of Argentina) and Paradiaphorus crenatus (Brazil). Seven alien curculionoids are known to originate from North America. They include five species of the family Curculionidae and two of Erirhinidae. Many curculionids introduced from North America are xylophagous sensu lato’, feeding on several broad- leaved or coniferous hosts. ‘The exceptions are the ash seed weevil Lignyodes bischoffi and Caulophilus oryzae, originally from the southeastern USA, which feeds on seeds. In con- trast, the two Erirhinidae species feed externally on weed roots and ferns, respectively. Seven curculionoid species come from Australasia, all curculionids: four cos- sonines, two molytines and one cyclomine. Three woodboring weevils (Pentarthrum huttoni, Euophryum confine and E. rufum, all from Cossoninae), feeding on decaying wood, originate from New Zealand. The four other species were unintentionally in- troduced from Australia. All feed inside plant material (xylophagous or herbiphagous), except the Eucalyptus snout beetle, Gonipterus scutellatus, a defoliator of Eucalyptus trees originated from Southern Australia. Only three curculionoid species are known to originate from Africa, a curculionine and two scolytines. The palm flower weevil, Neoderelomus piriformis, probably origi- nates from North Africa; it feeds on but also pollinates flowers of palms like Phoenix canariensis. The scolytines both originate from Canary Islands; Dactylotrypes longicollis breeds in Phoenix canariensis seeds, while Liparthrum mandibulare is a highly polypha- gous phloeophage. Three cosmopolitan curculionoid species originate from undetermined areas of the tropical and subtropical parts of the world: the tamarind seed borer, Sitophilus linearis (Dryophthoridae), and the palm seed borers Coccotrypes carpophagus and C. dactyli- perda (Scolytinae). As seed-feeders, they are readily distributed through commerce, which probably explain the uncertainty about their origin. Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 227 Concerning the curculionoids alien iz Europe, nine-tens of these (114 spp. among 129, Table 8.2.2) are introduced from mainland Europe to islands (mainly the Canary Islands, the Azores, the British Isles and Madeira). They are often widespread conti- nental species which have been introduced to islands by human transport. Other cases are mainly species of southern and western regions which were introduced into nor- thern Europe (as Otiorhynchus corruptor), especially to Denmark and Sweden. How- ever, some species have moved westwards (as Otiorhynchus pinastri and Phloeotribus caucasicus) and even southwards (ps duplicatus). Distribution of alien species in Europe As for the other arthropod groups, alien curculionoid species are unevenly distribu- ted throughout Europe, which may partly reflect differences in sampling intensity (Fig. 8.2.4, Table 8.2.1). In continental Europe, mainland Italy and France host the largest number of species alien to Europe, with 28 and 26 introduced curculionoid species, respectively. These countries are followed by continental Spain (17 spp.), Aus- tria (15 spp.), and Germany, Switzerland and United Kingdom? (13 spp.). This distri- bution is similar as that of all alien terrestrial invertebrates (Roques et al. 2009). The number of aliens per country significantly decreases eastwards (y=12 - 0.29*longi- tude, R7=0.21, F, ,,=8.08, p=0.008), but it is mainly correlated with human variables, country population (y=-1.5 + 3.7ln(population), population in million inhabitants, R?=0.39, F, ,,=19.6, p=1*10*) and country importation values (y=-32 + 3.5In(value), value 2003-2007 in million USD: The World Factbook 2009, R*=0.53, F .= 32.4, p=4*10°)*. The best model integrates importations and latitude (y=-19 + 3.6In(value) - 0.28*latitude, value in million USD, R’=0.60, F,, ,¢=20.6, p=3*10°), indicating that alien establishment is favored by human trade and warm climate. The abundance of aliens in mainland Italy and France is not fully explained by the model (predicted values 17 and 16 alien species, respectively); it is likely related to a combination of the diversity of habitats and plants present with the favorable climate and the importance in international shipping. Islands have a rather rich alien curculionoid fauna, especially Macaronesia: 29 (of which 14 presumed), 18 (8 presumed) and 10 (2 presumed) species in the Canary Is- lands, Madeira and the Azores, respectively. These islands are followed by Sicily (10 spp.), Corsica (8 spp.) and Malta (6 spp.). As it has been found for other alien ter- restrial invertebrates (Roques et al. 2009), the number of alien curculionoids per km? in European islands is higher than in continental countries (on average 2.8 vs 0.17 3 Concerning species alien to Europe, United Kingdom characteristics are closer to those of continental countries than to those of other islands, so we consider it as part of continental Europe. This is likely related to its large size and population. Computations were performed without small countries where no alien curculionoid is recorded, be- cause this absence is probably due to lack of data. Israel was also excluded due to its special location. 228 Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) Number of alien species nodata| | 6-10 NY 21-2» — : » Figure 8.2.4. Comparative colonization of continental European countries and islands by Curculionoi- dea species alien to Europe. Archipelagos: I the Azores 2 Madeira 3 the Canary Islands. alien/1000km’, R*=0.10, F, ..=6.56, p=0.013). Aliens density is specially high in Ma- deira and Malta (23 and 19 flied 1000km’, respectively), perhaps because these tiny islands are stopping places on trade routes. Islands show no global trend of alien dis- tribution. However, cold nordic islands (Greenland, Iceland, Svalbard) host few aliens, and in Macaronesia alien number (specially presumed alien number) decreases when distance to continent increases. Near half of alien curculionoid species (33 spp.) have been observed in only one country, most of them (31 spp.) in a peninsular region or on islands: Italy, Iberia, Macaronesian islands, Malta or the British Isles. Aliens introduced to such areas are less likely to move to nearby countries in comparison with aliens in other mainland re- gions, but Austria and Russia also host each an own alien species. As examples, Syagrius intrudens from Australia is encountered only in Great Britain, Naupactus leucoloma, from South America, is found only in the Azores, and Paradiaphorus crenatus, from Brazil, is known only from the Canary Islands. After the Canary Islands, Italy hosts the Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 229 highest number of alien species unique to one country, eight in total, of which six are from subfamilies Scolytinae and Platypodinae. Also, the recent arrival of these species, most of them having first been discovered later than 2000, may in part explain their currently restricted distribution. Ten alien species (14%) are limited to two countries. In almost all cases, the species are found in neighbour countries, as with the scolytine Dryocoetes himalayensis in France and Switzerland, and Macrorhyncolus littoralis in Great Britain and Ireland. One alien species, Scyphophorus acupunctatus, occurs in two distinct regions, Sicily and France, suggesting the possiblity of multiple introductions (this suggestion is supported by the previous interceptions of this species in different european countries: EPPO 2008). At the other extreme, the rice weevil Sitophilus oryzae has been found in 34 Euro- pean countries, and two other seed feeders, Sitophilus zeamais and Rhopalapion longi- rostre, occur in 23 and 21 countries. Their feeding habits in association with frequently transported seeds or stored products presumably explain this broad distribution. An- other eleven species are found in 10 or more countries. These include several long- established species: Xyleborus pfeilii®, the wood-borer Pentarthrum huttoni, the palm seed borer Coccotrypes dactyliperda and the parthenogenetic weevil Asynonychus god- mani. However, the relatively recently introduced (1993) palm weevil Rhynchophorus ferrugineus is also widely distributed, occurring in most of the Mediterranean region, which attests their high dispersal capabilities (natural and human-mediated). Overall, alien weevil species are more widespread in Europe than other alien terrestrial inver- tebrates, with 40% of species distributed in more than two countries vs. only 22% (Roques et al. 2009). 8.2.5. Main pathways and factors contributing to successful invasions There are two components to successful invasion, dispersal and establishment. Disper- sal to new continents by phytophagous arthropods is now almost entirely due to hu- man transport, the magnitude of which has inceased exponentially in recent decades. Plant feeding arthropods are carried in and on live plants and fruits, in wood, and as stowaways in shipments and baggage. Deliberate introductions of arthropods are less frequent, and most involve exotic organisms imported for biological control. Estab- lishment of new arrivals depends on availability of appropriate habitats near sites of introduction, ability to compete with similar species already present, and on a reason- able tolerance for the local climate. All exotic species of Curculionoidea have been introduced accidentally in Europe, vs. only 90% for all alien terrestrial invertebrates (Roques et al. 2009). The lack of in- tentional introductions of weevils could be related to their poor potential for biological control. One exotic weevil species (Stenopelmus rufinasus) has been used successfully for biological control of the American water fern Azolla filicoides in South Africa and to a less extent in the British Isles, but its first introduction in Europe was accidental (Sheppard et al. 2006, Baars and Caffery 2008). 230 Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) As is the case for other regions in the world, many of Europe's alien curculionoids have presumably arrived via the shipping of wooden materials: pallets, crating, and barked or unbarked timber (Brockerhoff et al. 2006, Haack 2001, 2006). Bark and wood boring species make up half of all alien weevils (50%); these have almost certainly been introduced with wood transport and solid wood packaging materials. Logs with bark are ideal for transporting bark beetles and other weevils. However, even debarked logs can contain live wood borers such as ambrosia beetles. Although some wood-bor- ing beetles have more restrictive requirements (e.g. high humidity and decayed wood: Euophryum confine, E. rufum, Pentarthrum huttoni), even these can often survive a few days or even weeks of transport. The east Asian ambrosia beetle X. germanus provides a typical example for entry by wood-borers. It was introduced to the USA (1932), where it was discovered in imported wine stocks in greenhouses; the species spread rapidly and has become an important nursery pest in warmer parts of eastern North America (Ranger et al. 2010). In Europe, it was first recorded after World War II, in Germany, where the species probably had been introduced with wood imported from Japan to southern Germany early in the 20th century; the present distribution area includes twelve European countries (Table 8.2.1). Seed feeders (20%) are introduced with the seeds, which are also an excellent way for transporting insects. Several of these species are associated with agricultural pro- ducts (e.g. Caulophilus oryzae, Sitophilus oryzae and S. zeamais), however most species feed on ornamental or forest seeds (e.g. Rhopalapion longirostre on Alcea, Lignyodes bischoffi on ash seeds, Dactylotrypes longicollis on palm seeds). Other alien species (30%) live on or inside leaves and nonwoody stems, or in the soil. The formers can be introduced with their host plants or with host plant products (e.g. Gonipterus scutellatus with eucalyptus, Listroderes costirostris with plants such as tobacco); weevils living around roots (e.g. Asynonychus godmani) are transported with living plants. These feeding habits (plus root boring, which doesn’t exist among aliens to Europe) are more frequent among presumed aliens to Europe and among aliens in Europe (52%); both cases result from a rather short distance transport, which likely allows survival of less protected insects (among wood boring scolytines, phloeopha- gous species are similarly much more frequent than xylomycetophagous species among presumed aliens to Europe and among aliens im Europe, contrary to what is observed among other aliens to Europe). Currently, most introductions are due to international trade, but the increasing movement of fruits and plants by travelers, which is much more difficult to check, may contribute to the future diffusion of new alien species. Newly arrived phytophages must find suitable hosts. The likelihood of success is greatly enhanced if the species is not too host specific, or if its preferred hosts are abundant. Not surprisingly, the majority of established exotic weevils in Europe are polyphagous, and the hosts of others are often widespread and abundant plants (Table 8.2.1). Parthenogenesis and inbreeding further increase the chances for successful co- lonization. When an exotic species is first introduced to a new area, it faces a varie- Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 231 ty of problems associated with low density which reduce the likelihood of success- ful establishment and slow the rate of invasion (Tobin et al. 2007, Liebhold and Tobin 2008, Contarini et al. 2009). New populations create problems for mate finding; parthenogenetic females do not mate, and inbreeding females mate with brothers while in the natal nest, before dispersal (Jordal et al. 2001); in both cases, there is no problem of mate location and new populations can be established by single females. Very small populations (such as those in recent colonizations) may suffer from high levels of inbreeding depression (Charlesworth and Charlesworth 1987); however, regular inbreeding species such as the invasive scolytines have pre- sumably purged their genomes of the deleterious alleles responsible for inbreeding depression (Charlesworth and Charlesworth 1987, Jordal et al. 2001, Peer and Ta- borsky 2005). Only a few invasive curculionoid species are parthenogenetic: Asy- nonychus godmani, Lissorhoptrus oryzophilus, Listroderes costirostris (Morrone 1993) and Naupactus leucoloma, whose males are unknown outside its native range (Lan- teri and Marvaldi 1995). However, over half of the alien scolytines inbreed (59%, presumed aliens excluded), compared with less than a third of scolytines native to Europe and about a fourth of Scolytinae species worldwide (Kirkendall 1993). 8.2.6. Most invaded ecosystems and habitats All alien curculionoid species are phytophagous, as are nearly all curculionoids world- wide. Most of the species have a cryptic way of life, at least during larval stage, feeding inside plant tissues such as stems or seeds, or living in the soil; only 9% are leaf/stem browsers. Stems and trunks is the major feeding niche of most alien curculionoids (65%). Most of these are bark beetles, ambrosia beetles or other wood borers (50%); herbiphagous (15%) comprise the remaining. Seeds are the second most important feeding niche (18%), followed by leaves (9%; some species could also attack non woody stems) and roots (6%). Last species, Neoderelomus piriformis, feeds on flowers, and acts as pollinator in palm trees. By contrast, of the curculionoids alien in Europe, only 33% are wood borers, among which most are phloeophagous (28%). A third (30%) attack roots, especially root browsers as Otiorhynchus and Sitona (26%), the remaining (4%) being root borers. Herbiphagous (18%), spermatophagous (15%) and leaf/stem browsers (4%) comprise the remaining. Near half of the alien curculionoid species established in Europe colonize urban and peri-urban habitats, primarily parks and gardens (27%) and around buildings (11%). Woodlands is also a frequent habitat for the alien curculionoids (27%), beyond natural heathlands (16%), cultivated agricultural lands (9%) and greenhouses (5%). Only three species occur in wetland habitats, one in coastal and two in inland surface water (Fig. 8.2.5). The importance of natural heathlands is in fact mainly limited to specific areas, most of the species recorded in these habitats being presumed aliens at- tacking euphorbias in Macaronesian xerophytic heathlands. 232 Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) Percentage of alien species living in the habitat 0 10 20 30 B - Coastal habitats C - Inland surface water habitats D - Mire, bog and fen habitats E - Grassland and tall forb habitats F - Heathland, scrub and tundra habitats G - Woodlands and forests H - Inland without vegetation | - Agricultural and horticultural lands 12+ X6-X25 - Parks and gardens J - Buildings, houses J100- Greenhouses Habitats Figure 8.2.5. Main European habitats colonized by Curculionoidea species alien to Europe. The number besides each bar indicates the absolute number of alien curculionoids recorded per habitat. Note that a species may have colonized several habitats. This pattern differs from the average value observed for all arthropods, where only a fourth of the species is recorded in natural or semi-natural habitats, and where agri- cultural lands and greenhouses contain more alien species than woodlands. ‘That could be obviously related to the high frequency of xylophagous sensu Jato’ habits in alien cur- culionoids. Both deciduous trees, such as Populus sp. and Fraxinus sp, and conifers in the genera Picea and Pinus are colonized by several alien curculionoid species utilizing trees. Eucalyptus plantations are also affected by a defoliating curculionid, Gonipterus scutellatus, both host and weevil originating in Australia. In urban and suburban areas such as gardens and parks, other trees species, mainly exotics and in particular palm trees, are also affected by alien curculionoids. 8.2.7. Ecological and economic impact Ecological impacts of alien insects are poorly known in general (Kenis et al. 2009), and the impacts of Curculionoidea species alien to Europe seem not to have been documented at all. Their economic impact is better known, reflecting the economic importance of many of these alien species. A third of the Curculionoidea species alien to Europe (26 species) have a known economic impact, a much higher proportion than for native weevils, even though the latter contain numerous pests. Nevertheless, this high proportion may partly be an artefact, since pests have a higher probability of being detected. The most damaging species are the four attacking stored products. ‘The rice weevil Sitophilus oryzae and the maize weevil S. zeamais are among the main pests of stored grains worldwide, destroying significant amounts and incurring high pest management Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 233 Figure 8.2.6. Examples of alien curculionoids: Gonipterus scutellatus. Adult damage on Eucalytus sp. (Credit: Alain Roques). costs’ (Balachowsky 1963, Pimentel 1991). Larvae develop in cereal seeds and adults feed on these seeds as well as on a wide variety of stored products, products derived from cereal grains and even dried vegetables. Damages is exascerbated by incompletely dried stored products (Balachowsky 1963). In addition to their direct damage, these species facilitate attacks of grains by other pests. Caulophilus oryzae, a less widespread species, sporadically causes the same kind of damages, while Avaecerus coffeae attacks grains but mainly less common products such as stored coffee and cocoa beans. Five species attack native or introduced cultivated plants. Listroderes costirostris attacks a wide range of vegetables and weeds; adults can also damage foliage of fruit trees. ‘The re- cently established whitefringed weevil, Naupactus leucoloma, is also highly polyphagous; its soil-inhabiting larvae are a serious pest of many agricultural crops. The banana root weevil, Cosmopolites sordidus, and Paradiaphorus crenatus are important pests of tropical cultures (banana and pineapple, respectively). Their economic impact is currently limited in Europe due to the limited distribution of their hosts in this area and a rather low ag- gressiveness in its climate, but it could increase later in the future according to the global warming. The last species is the rice water weevil, Lissorhoptrus oryzophilus. Recently in- troduced in Europe, it is a major pest of rice, but also attacks indigenous Carex. Eight species damage different ornamental plants and trees, mainly introduced tropical or subtropical species. The palm weevil Rhynchophorus ferrugineus is a dan- gerous pest of palms which has rapidly colonized the Mediterannean basin. On the Canary Islands, palms are also attacked by the lesser coconut weevil Diocalandra fru- menti. Even if damage are mainly esthetic, they are worrying because this insect princi- 5 Damages are also due to the grain weevil S. granarius, probably alien too, but not taken into account here because it has been established in Europe at least since Antiquity. 234 Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) Figure 8.2.7. Examples of alien curculionoids: Rhynchophorus ferrugineus. Female, larvae and damage (Credit: Juan Antonio Avalos, Universidad Politécnica de Valencia). pally attacks Phoenix canariensis, an endemic palm which is emblematic of the Canary Islands where it is widely used for landscaping and is a major element of coastal land- scape. Asynonychus godmani attacks roots of a large variety of ornamental shrubs and fruit trees, native or introduced. Others species are monophagous or oligophagous on introduced hosts: the tamarind seed borer Sitophilus linearis on Tamarindus indica, Demyrsus meleoides on cycadophyts, Scyphophorus acupunctatus on Agavaceae species, Phloeotribus liminaris on Prunus serotina, Phloeosinus rudis on Cupressaceae species. Five species have an impact on forests or related habitats. Three attack live exotic or native trees. The Eucalyptus snout beetle Gonipterus scutellatus is an important pest of Eucalyptus everywhere it has been introduced (see factsheet 14.12). This defoliator causes severe damage and wood loss, particularly on E. globulus, the major cultivated Eucalyptus species in southern Europe. Rhyephenes humeralis attack another introduced tree, Pinus radiata, but causes less damage. Megaplatypus mutatus is one of the few platypodine beetles which breeds in live trees; it is highly polyphagous, but in Europe it has thus far only been found to damage Populus plantations in Italy (Alfaro et al. 2007). The two other species depreciate wood stock. Gnathotrichus materiarius is a common pest of a large variety of conifer wood, and Xylosandrus germanus sporadically attacks mainly broadleaf wood. Pentarthrum huttoni and the two Euophryum species live in rotting wood, so their economic impact is generally low, though they do attack wood of historically signif- Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 935 Figure 8.2.8. Examples of alien curculionoids: Scolytinae. Top left: Gnathotrichus materiarius: gallery in wood (Credit: Louis-Michel Nageleisen). Top right: Cyclorhipidion bodoanus: femelle (Credit: Louis- Michel Nageleisen). Bottom: Xylosandrus germanus (Blandford 1894): female (Credit: Daniel Adam), adults and gallery holes on wood (Credit: Louis-Michel Nageleisen). cant artefacts or buildings. Finally, as opposed to all previous species, the introduced frond-feeding weevil Stenopelmus rufinasus has a positive impact due to its hability to control the invasive red water fern Azolla filiculoides. 8.2.8. Conclusion The superfamily Curculionoidea is well represented among alien species now estab- lished in Europe. Alien weevils show specific characteristics comparing both native and world ones, which seem result from a selection of species having high capabilities to human-mediated dispersal and establishment in a new habitat. Thus, they have often cryptic habits, as seed boring or wood and plant boring, leading to over-representation of bark and ambrosia beetles and other xylophagous sensu lato’ species; alien weevils are consequently more numerous in natural areas than other terrestrial invertebrate aliens. Seed feeders are the major alien pests. Alien species are mainly originated from Asia, which is related to the importance of trade with this continent, and many of them come from different tropical or subtropical areas. The more worrying observation is the fast increase in the invasion rate during last decades, as noticed for all terrestrial invertebrate aliens. Without appropriate control, the invasive pressure will probably continue to increase in the future, further threaten- 236 Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) ing European people and ecosystems, more especially as global warming may allow the naturalization of more tropical and subtropical species accidentally introduced into Europe and particularly the Mediterranean. References Abbazzi P, Osella G (1992) Elenco sistematico-faunistico degli Anthribidae, Rhinomaceridae, Attelabidae, Apionidae, Brentidae, Curculionidae Italiani (Insecta, Coleoptera, Curculio- noidea): I Parte. Redia 75: 267-414. Abbazzi P, Colonnelli E, Masutti L, Osella G (1994) Coleoptera Polyphaga XVI (Curculiono- idea). In: Minelli A, Ruffo S, La Posta S (Eds) Checklist delle specie della fauna italiana 61. Bologna: Calderini, 35-64. Alexander KNA (2002) The invertebrates of living & decaying timber in Britain and Ireland - a provisional annotated checklist. English Nature Research Reports 467. 142 pp. Alfaro RI, Humble LM, Gonzalez P, Villaverde R, Allegro G (2007) The threat of the ambrosia beetle Megaplatypus mutatus (Chapuis) (=Platypus mutatus Chapuis) to world poplar resou- rces. Forestry 80: 471-479. Alonso-Zarazaga MA (Ed) (2004) Fauna Europaea: Coleoptera 1, Curculionoidea. Fauna Eu- ropaea version 1.1. http://www.faunaeur.org/. Alonso-Zarazaga MA, Goldarazena A (2005) Presence in the Basque Country of Rhyephenes hu- meralis (Coleoptera, Curculionidae), a pest of Pinus radiata coming from Chile. Boletin de la S.E.A. 36: 143-146. Alonso-Zarazaga MA, Lyal CHC (1999) A World Catalogue of Families and Genera of Curcu- lionoidea (Insecta: Coleoptera) (excepting Scolytidae and Platypodidae). Barcelona: Ento- mopraxis'S:.G,. P3175 pp: Angelov P (1960) Prouchvaniya vurkhu entomofaunata na parka Otdich I kultura (mestnostta Ostrova) kray Plovdiv s nyakoi faunistichni belezki. Godishnik na muzeite v Plovdiv 3: 7-40. Arzone A (1976) Un nemico dell’Eucalipto nuovo per I'Italia. Apicoltore Moderno 67: 173-177. Audisio P, Cornacchia P, Fattorini L, Franceschi S$, Gatti E et al. (2008) Selected beetle families in natural forests and Norway spruce stands at Vincheto di Celarda Nature Reserve and the effects of conservation actions (Coleoptera). In: Hardersen S, Mason F, Viola F. Cam- pedel D, Lasen C et al. (Eds) Research on the natural heritage of the Reserves Vincheto di Celarda and Val Tovanella (Belluno province, Italy). Conservation of two protected areas in the context of a LIFE project. Quaderni Conservazione Habitat, 5. Verona: Arti Grafiche Fiorini, 195-217. Baars JR, Caffery J (2008) Water fern, Azolla filiculoides -Under biological control in Ireland. Invasive Species Ireland, Case study 4. 8: 12pp. Balachowsky A (1949) Faune de France 50: Coléoptéres Scolytides. Paris: Librairie de la facul- té des sciences. 320 pp. Balachowsky AS (1963) Entomologie appliquée a agriculture, Tome I, Coléoptéres, Second Volume. Paris: Masson. 1391 pp. Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 Da Barclay MVL (2001) An exotic weevil Otiorhynchus corruptor Horst. (Curculionidae). British Journal of Entomology and Natural History 14: 160-161. Barranco P, de la Pefia J, Cabello T (1996) EI picudo rojo de las palmeras, Rhynchophorus ferru- gineus (Olivier), nueva plaga en Europa. Phytoma-Espana 67: 36-40. Base de dados da biodiversidade dos Acores. http://www.azoresbioportal.angra.uac.pt/. Bitton S, Nakache Y (2000) Red palm weevil in Israel. Proceedings of date palm international symposium, 2000.02.22-25, Republic Of Namibia. Bolu H, Legalov AA (2008) On the Curculionoidea (Coleoptera) fauna of Almond (Amygdalus communis L.) orchards in South-eastern and Eastern Anatolia in Turkey. Baltic J. Coleop- terol. 8: 75-86. Borges PAV, Vieira V, Dinis F, Jarroca S (2005) List of arthropods (Arthropoda). In: Borges PAV, Cunha R, Gabriel R, Martins AF, Silva L, Vieira V (Eds) A list of terrestrial fauna (Mollusca and Arthropoda) and flora (Bryophyta, Pteridophyta and Spermatophyta) from the Azores. Lisboa: Direccao Regional do Ambiente & Universidade dos Acores, Horta, Angra do Heroismo & Ponta Delgada, AAPP, 163-221. Borisch D (1997) Edvard Anderson’s Mediterranean greenhouse in Stockholm, an immigration gate for weevils (Curculionidae) from southern Europe. Entomologisk Tidskrift 118: 133-134. Bouget C, Noblecourt T (2005) Short-term development of ambrosia and bark beetle assem- blages following a windstorm in French broadleaved temperate forests. Journal of Applied Entomology 129: 300-310. Bright DE (1987) A review of the Scolytidae (Coleoptera) of the Azores with description of a new species of Phloeosinus. Museu Municipal Funchal 107: 1-5. Brockerhoff EG, Bain J, Kimberley M, Knizek M (2006) Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Canadian Journal of Forest Research 36: 289-298. Bruge, H (1994) A propos de Pentarthrum huttoni Wollaston, 1854 (Coleoptera, Curculioni- dae, Cossoninae). Bulletin et Annales de la Société Royale Belge d'Entomologie 130: 313-323. Buck FD (1948) Pentarthrum huttoni Woll. (Col., Curculionidae) and some imported Cossini- nae. Entomologists Monthly Magazine 84: 152-154. Caldara R, Diotti L, Regalin R (2004) Prima segnalazione per ’Europa di Lissorhoptrus ory- zophilus Kuschel (Coleoptera, Curculionoidea, Erirhinidae), temibile parassita di Oryza sativa L. Bollettino di Zoologia Agraria e di Bachicoltura, Serie II 36: 165-171. Carrillo AM (1999) El gorgojo del eucalipto en Canarias. Diario de Avisos (Santa Cruz de Te- nerife), 1999/07/12. Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary conse- quences. Annual Review of Ecology and Systematics 18: 237-268. Chilahsayeva YA (2008) [First discovery of Polygraphus proximus Blandford (Coleoptera: Sco- lytidae) in Moscow Oblast]. Bulletin of Moscow Society of Naturalists 113: 39-41. Contarini M, Onufrieva KS, Thorpe KW, Raffa KF, Tobin PC (2009) Mate-finding failure as an important cause of Allee effects along the leading edge of an invading insect population. Entomologia Experimentalis et Applicata 133: 307-314. Covassi M (1974) Il Demyrsus meleoides Pascoe: un potenziale nemico delle cicadee ornamenta- li introdotto in Italia (Coleoptera, Curculionidae). Redia 55: 211-217. 238 Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) Covassi M (1991) Il Phloeosinus armatus Reitter, coleottero scolitide del cipresso, nuovo per PItalia. In Atti del Convegno “Il Cipresso. Proposte di valorizzazione ambientale e produtti- va nei paesi mediterranei della Comunita Economica Europea’, Firenze (Italy) 12-13 dicem- bre 1991, 190-196. Dal Monte G (1972) Generalita sui principi scientifici e tecnici per una razionale conservazione dei cereali nei magazzini. Atti del 1° Simposio ,,La difesa antiparassitaria nelle industrie ali- mentari e la protezione degli alimenti*, Piacenza (Italy) 1972. Tip. Edit. Piacentina, 91-107. Dana ED, Viva S (2006) Stenopelmus rufinasus Gyllenhal 1835 (Coleoptera: Erirhinidae) natu- ralized in Spain. Coleopterists Bulletin 60: 41-42. Dieckmann L (1983) Beitrage zur Insektenfauna der DDR, Coleoptera—Curculionidae (Ta- nymecinae, Leptopiinae, Cleoninae, Tanyrhynchinae, Cossoninae, Raymondionyminae, Bagoinae, Tanysphyrinae). Beitr Entomol 33: 257-381. Duff AG (Ed) (2008) Checklist of Beetles of the British Isles, 2008 edition. Wells: Duff AG. 164 pp. Ehret JM (1983) Apion (Rhopalapion) longirostre, espece nouvelle pour la France (Coleoptera, Curculionidae). L’Entomologiste 39: 42. Emerson BC (2008) Speciation on islands: what are we learning? Biological Journal of the Lin- nean Society 95: 47-52. EPPO (2005) Datasheets on quarantine pests — [ps cembrae and Ips subelongatus. EPPO Bulletin 35: 445-449, EPPO (2006) EPPO Reporting Services 2006/001, 2006/028, 2006/225, 2006/226, 2006/227. EPPO (2008) EPPO Reporting Services 2008/220. Ess] FE Rabitsch W (2002) Neobiota in Osterreich. Wien: Umweltbundesamt. 432 pp. Faccoli M (1998) The North American Guathotrichus materiarius (Fitch) (Coleoptera Scolyti- dae): an ambrosia beetle new to Italy. Redia 81: 151-154. Faccoli M (2008) First record of Xyleborus atratus Eichhoff in Europe, with an illustrated key to European Xyleborini (Coleoptera Curculionidae Scolytinae). Zootaxa 1772: 55-62. Faccoli M, Frigimelica G, Mori N, Petrucco Toffolo E, Vettorazzo M et al. (2009): First record of Ambrosiodmus (Hopkins, 1915) (Coleoptera: Curculionidae, Scolytinae) in Europe. Zo- otaxa 2303: 57-60. Fernandez Carrillo JL, Fernandez Carrillo E, Alonso-Zarazaga MA (2005) [First recording of Stenopelmus rufinasus Gyllenhal, 1835 in the Iberian Peninsula (Coleoptera, Erirhinidae)]. Graellsia 61: 139-140. Foster AP, Morris MG, Whitehead PF (2001) Ixapion variegatum (Wencker, 1864) (Col., Api- onidae) new to the British Isles, with observations on its European and conservation sta- tus. Entomologists Monthly Magazine 137: 95-105. FREDON-Corse (2007) Le charancon rouge du palmier a débarqué en Corse. http://www.fre- don-corse.com/actions/surveillance_CR.htm. Freude H, Harde KW, Lohse GA (1983) Die Kafer Mitteleuropas 11: Familienreihe: Rhyncho- phora (Schluf’). Krefeld: Goecke & Evers Verlag. 342 pp. Friedman ALL (2006) Derelomus piriformis Hoffmann (Curculionoidea: Curculionidae: Cur- culioninae: Derelomini), a new invasive species in Israel. Phytoparasitica 34: 357-359. Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 239 Friedman ALL (2009) The vegetable weevil, Listroderes costirostris Schoenherr (Curculionidae: Cyclominae): a new invasive pest in Israel. Phytoparasitica 37: 331-332. Garcia R (2003) Coledpteros: nuevos datos sobre la distribucién en el archipiélago canario. Zoras: revista del Centro Asociado Uned La Palma mayo 2003: 29-36. Germain JF, Bertaux FE, Streito JC (2008) Attaque surprise de Listroderes difficilis Germain sur la Céte d’Azur (Coleoptera curculionidae). L’Entomologiste 64: 89-90. Germain JF, Ramel JM, Maury A, Blanchon F (2008) Premier signalement en France d’un co- léoptére ravageur des agaves. PHM-Revue Horticole 505: 34-36. Germann C (2004) Otiorhynchus pinastri (Herbst, 1795) - ein invasiver Xenobiont aus dem éstlichen Europa in der Schweiz (Coleoptera, Curculionidae). Mitteilungen der Entomolo- gischen Gesellschaft Basel 54: 110-114. Gillerfors G (1988) Coleoptera from pulpwood imported to South Sweden from France and Spain. Entomologisk Tidskrift 109: 42-45. Gonzales et al (2002) Bol. San. Veg. Plagas 28: 347-355. Gosik R, Letowski J, Mokrzycki T, Wanat, M (2001) Lignyodes bischoffi (Blatchley, 1916) (Cole- optera: Curculionidae) - new to the fauna of Poland. Wiadomosci Entomologiczne 20: 43-48. Haack RA (2001) Intercepted Scolytidae (Coleoptera) at U.S. ports of entry: 1985-2000. Inte- grated Pest Management Reviews 6: 253-282. Haack R.A (2006). Exotic bark- and wood-boring Coleoptera in the United States: recent es- tablishments and interceptions. Canadian Journal of Forest Research 36: 269-288. Hackett D (1998) The fern weevil, Syagrius intrudens Waterhouse (Curculionidae) in Cornwall. The Coleopterist 7: 20-21. Haghebaert G (1991) Nieuwe adventieve Coleoptera uit Belgié. Bull. Annls. R Soc. Belge Ento- mol. 127: 347-348. Halmschlager E, Ladner C, Zabransky P, Schopf A (2007) First record of the wood boring weevil, Pentarthrum huttoni, in Austria (Coleoptera: Curculionidae). Journal of Pest Science 80: 59-61. Hansen M (1996) Catalogue of the Coleoptera of Denmark / Katalog over Danmarks biller. Stenstrup: Apollo Books. 231 pp. Heijerman T, Moraal L, Burgers J, de Goffau L (2003) Otiorhynchus apenninus, a new weevil for the Netherlands (Coleoptera: Curculionidae). Nederlandse Faunistische Mededelingen 19: 41-48. Henin JM, Versteirt V (2004) Abundance and distribution of Xylosandrus germanus (Blandford 1894) (Coleoptera, Scolytidae) in Belgium: new observations and an attempt to outline its range. Journal of Pest Science 77: 57-63. Hill M, Baker R, Broad G, Chandler PJ, Copp GH et al. (2005) Audit of non-native species in England. English Nature Research Reports 662, English Nature, Peterborough. 82 pp. Hoffmann A (1950) Faune de France 52: Coléoptéres Curculionides (Premiére partie). Paris: Lechevalier. 486 pp. Hoffmann A (1954) Faune de France 59: Coléoptéres Curculionides (Deuxiéme partie). Paris: Lechevalier. 722 pp. Hoffmann A (1958) Faune de France 62: Coléoptéres Curculionides (Troisiéme partie). Paris: Lechevalier. 631 pp. 240 Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) Holzer (2007) Erstnachweise und Wiederfunde fiir die Kaferfauna der Steiermark (X) (Coleo- ptera). Joannea Zoologie 9: 51-68. Holzschuh C (1994) Pityophthorus traegardhi, ein neuer Borkenkéfer fiir Osterreich und Mittel- europa (Coleoptera: Scolytidae). Forstschutz Aktuell, Wien 15: 4. Israelson G (1969) Some additions to the Coleopterous fauna of the Canary Islands (Coleop- tera). EOS 44: 149-157. Israelson G (1972) Male copulatory organs of Macronesian species of Aphanarthrum Wol- laston. With designations of lectotypes and descriptions of new taxa (Col. Scolytidae). Entomologica Scandinavica 3: 249-257. Israelson G (1980) Taxonomical and nomenclatural notes on some Canarian Coleoptera. Vi- eraea 9: 183-210. Israelson G (1990) A key to the Macaronesian Hypoborini, with description of two new species (Coleoptera, Scolytidae). Bocagiana 137: 1-11. Izquierdo I, Martin JL, Zurita N, Arechavaleta M (Eds) (2004) Lista de especies silvestres de Canarias (hongos, plantas y animales terrestres). 2nd, Consejeria de Politica Territorial y Medio Ambiente del Gobierno de Canarias. 500 pp. Janson OE (1921) Stenopelmus rufinasus Gyll., an addition to the list of British Coleoptera. Entomologist’s Monthly Magazine 57: 225-226. Joakimow D (1904) Prinos kum Bulgarskata fauna na nasekomite Insecta I Coleoptera. Sbor- nik narodni umotvoreniya nauka I knizhnina 20:1-43. Jordal BH, Beaver RA, Kirkendall LR (2001) Breaking taboos in the tropics: inbreeding pro- motes colonization by wood-boring beetles. Global Ecology and Biogeography 10: 345-357. Juan C, Emerson BC, Oromi P, Hewitt GM (2000) Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends in Ecology and Evolution 15: 104-109. Kehat M (1999) Threat to date palms in Israel, Jordan and the Palestinian authority by the red palm weevil, Rhynchophorus ferrugineus. Phytoparasitica 27: 241-242. Kenis M, Auger-Rozenberg MA, Roques A, Timms L, Péré C et al. (2009) Ecological effects of invasive alien insects. Biological Invasions 11: 21-45. Kirkendall LR (1993) Ecology and evolution of biased sex ratios in bark and ambrosia beetles (Scolytidae). In: Wrensch DL, Ebbert MA (Eds) Evolution and Diversity of Sex Ratio: Insects and Mites. New York: Chapman and Hall, 235-345. Kirkendall LR personal observations. Kirkendall LR, Dal Cortivo M, Gatti E (2008) First record of the ambrosia beetle, Monarthrum mali (Curculionidae, Scolytinae) in Europe. /. Pest Science 80: 123-126. Kirkendall LR, Faccoli M (2010) Bark beetles and pinhole borers (Curculionidae: Scolytinae, Platypodinae) alien to Europe. ZooKey (in press). Knizek M (2004) Fauna Europaea: Scolytinae. In: Alonso-Zarazaga MA (Ed) Fauna Europaea: Curculionidae. Fauna Europaea version 1.1. http://www.faunaeut.org. Kontodimas D, Oikonomou D, Thymakis N, Menti C, Anagnou-Veroniki M (2006) [New se- rious pest of palm trees, the coleopterous Rhynchophorus ferrugineus (Olivier)]. Agricultu- re-crop & animal husbandry, 1: 54-57. Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 241 Kozlowski MW, Knutelski S (2003) First evidence of an occurrence of Rhopalapion longirostre in Poland. Weevil News 13: 4 pp. http://www.curci.de/Inhalt.html. Lanteri AA, Marvaldi AE (1995) Graphognathus Buchanan a new synonym of Naupactus De- jean and systematics of the NV. leucoloma species group (Coleoptera: Curculionidae). The Coleopterists Bulletin 49: 206-228. Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annual Review of Entomology 53: 387-408. Lombardero MJ, Novoa F (1993) [Liparthrum mandibulare Wollaston, 1854 (Coleoptera: Sco- lytidae), the first record from continental Europe]. Elytron (Barcelona) 7: 105-110. Lombardero MJ, Novoa F (1994) Datos faunisticos sobre escolitidos ibéricos (Coleoptera: Sco- lytidae). Boletin de la Asociacién Espanola de Entomologia 18: 181-186. Longo S (2007) Black weevil of agave. Informatore Agrario Supplemento 63(39, Supplemen- to 1): 43. Lucht W (1985) Uberraschende Freilandfunde fremdlandischer Kafer in Siidhessen. Naturwis- senschaftlicher verein Darmstadt Bericht N F 9, 29-32. Lundberg S (1995) Catalogus Coleopterorum Sueciae. Version 2. Stockholm: Naturhistoriska Riksmuseet & Entomologiska Foreningen. 217 pp.en. Lundberg S (2006) New and excluded beetle species since 1995 year's Catalogus Coleoptero- rum Sueciae. Entomologisk Tidskrift 127: 101-111. Machado A, Oromi P (2000) Elenco de los Coledpteros de las Islas Canarias. Monografia 70. La Laguna: Instituto de Estudios Canarios. 308 pp. Mandelshtam MY, Aguin-Pombo D, Nunes E (2006) Hylastes attenuatus Erichson 1836 (Coleopte- ra, Scolytidae), an exotic bark beetle new to Madeira Fauna. Coleopterists Bulletin 60: 297-298. Mandelshtam MY, Popovichev BG (2000) [An annotated list of Scolytidae species of Lenin- eradkaya Oblast]. Entomological Review 79: 599-618. Mansilla JP (1992) Presencia sobre Eucalyptus globulus Labill de Gonipterus scutellatus Gyll. (Col. Curculionidae) en Galicia. Boletin de Sanidad Vegetal, Plagas 18: 547-554. Mansilla JP, Pérez Otero R (1996) El defoliador del eucalipto Gonipterus scutellatus. Phytoma Espana 81: 36-42. MAPA (2006) Orden de 10 de febrero de 2006 por la que se adoptan medidas fitosanitarias cautelares previas para evitar la propagacion del curculidnido ferruginosos entre la palmera canaria. Boletin Oficial de Canarias 30: 3084-3085. Markovich A (1909) Prinos za izuchaveneto na nasekomnata fauna v razgradksa okolnost. Sbor- nik narodni umotvoreniya nauka I knizhnina 25: 1-20. Mazur M (2002) ‘The distribution and ecology of weevils (Coleoptera: Nemonychidae, At- telabidae, Apionidae, Curculionidae) in western Ukraine. Acta zoologica cracoviensia 45: PIB 24 4 Menet D (1998) Confirmed presence of Euophryum confine (Broun) (Col. Curculionidae, Cos- soninae) in France. Bulletin de la Société Entomologique de France 103: 286. Meregalli M (2004) Fauna Europaea: Cyclominae. In: Alonso-Zarazaga MA (Ed) Fauna Euro- paea: Curculionidae. Fauna Europaea version 1.1. http://www.faunaeut.org. Mifsud D, Knizek M (2009) The bark beetles (Coleoptera: Scolytidae) of the Maltese Islands (Central Mediterranean). Bulletin of the Entomological Society of Malta 2: 25-52. 242 Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) Moncoutier B (1982) Un nouveau curculionide en France. L’Entomologiste 38: 206. Moraal, LG (2006) Insectenplagen op bomen en struiken in 2005. Vakblad Natuur, Bos en Landschap 3: 12-15. Moraal, LG (2009) Infestations of the Japanese thuja bark beetle Phloeosinus rudis (Col., Scoly- tidae) in The Netherlands. In International Congress on Biological Invasions (ICBI), Fuzhou (China), 2-6 November, 2009. Morris MG (1990) Orthocerous weevils: Coleoptera: Curculionoidea (Nemonychidae, Anthri- bidae, Urodontidae, Attelabidae and Apionidae). Handbooks for the Identification of Bri- tish Insects 5(16). 108 pp. Morris MG (2002) True weevils (part I): Coleoptera: Curculionidae: (subfamilies Raymondiony- minae to Smicronychinae). Handbooks for the Identification of British Insects 5(17b). 149 pp. Morrone JJ (1993) Systematic revision of the costirostris species group of the weevil genus Lis- troderes Schoenherr (Coleoptera, Curculionidae). Transactions of the American Entomologi- cal Society 119: 271-315. Mphuru AN (1974) Araecerus fasciculatus de Geer (Coleoptera: Anthribidae): A review. Trop. Stored Prod. Inf. 26: 7-15. Neid J (2003) Présence en Haute-Corse de Gonipterus scutellatus Gyllenhal 1833 (Coleoptera, Curculionidae, Cyclominae, Gonipterini). L’Entomologiste 59: 103. Noblecourt T (2004) Note sur les Coléoptéres Scolytidae : espéces rares ou peu communes en France. Coléoptériste 7: 33-36. O’Brien CW, Wibmer GJ (1982) Annotated checklist of the weevils (Curculionidae sensu lato) of North America, Central America, and the West Indies (Coleoptera: Curculionoidea). Memoirs of the American Entomological Institute (Gainesville) 34. 382 pp. O’Connor JP (1977) Occurrence of Euophryum rufum Broun (Col., Curculionidae) in Ireland. Entomologists Monthly Magazine 113: 56. Oberprieler RG, Marvaldi AE, Anderson RS (2007) Weevils, weevils, weevils everywhere. Zo- otaxa 1668: 491-520. Obretenchev D, Atanasov H, Tzalev M, Kirilov L (1990) Razprostranenie na nyakoi vun- shnokarantinni vrediteli po skladiranite hrani I produkti ot rastitelen proizhod v Bulgaria. Nauchni docladi i suobshteniya, SSA, S. WW: 172-178. Olafsson E (1991) A checklist of Icelandic insects. Fjolrit Natturufraedistofnunar 17: 1-69. OPIE (2002) Listes de références - Faune de la France métropolitaine. Coléoptéres Scolytidae. http://www. inra.fr/opie-insectes/observatoire/listes/|_scolyt.htm. Oromi P, Garcia R (1995) Contribucién al conocimiento de la fauna de coleépteros de Cana- rias y su distribucién. Vieraea 24: 175-186. Paiva MR (1996) Management of forest insects in Portugal. XX International Congress of Ento- mology, Firenze (IT), 1996/08/25—31. Abstract 16-026, 510. Palm, E (1996) Nordeuropas snudebiller 1: De kortsnudende arter (Coleoptera: Curculioni- dae) - med sarligt henblik pa den danske fauna. Danmarks Dyreliv 7. 356 pp. Peer K, Taborsky M (2005) Outbreeding depression, but no inbreeding depression in haplodi- ploid ambrosia beetles with regular sibling mating. Evolution 59: 317-323. Pennacchio F, Faggi M, Gatti E, Caronni F Colombo M et al. (2004) First record of Phloeotri- bus liminaris (Harris) from Europe (Coleoptera Scolytidae). Redia 87: 85-89. Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 243 Pennacchio F, Roversi PF, Francardi V, Gatti E (2003) Xylosandrus crassiusculus (Motschulsky) a bark beetle new to Europe. Redia 86: 77-80. Perrin H (1984) Présence en France d'Apion (Rhopalapion) longirostre (Olivier) (Coleoptera, Curculionidae, Apioninae) et répartition dans la région paléarctique. L’'Entomologiste 40: 269-274. Perrin H (1995) Rhopalapion longirostre (Olivier) (Coleoptera: Apionidae): 12 années de recol- tes en France. L’Entomologiste 51: 220. Pfeffer A (1995) Zentral- und westpalaarktische Borken- und Kernkafer (Coleoptera: Scolyti- dae, Platypodidae). Entomologica Basiliensia 17: 5-310. Piel E. Grégoire JC, Knizek, M (2006) New occurrence of [ps duplicatus Sahlberg in Herstal (Liege, Belgium). Bulletin OFPP 36: 529-530. Pimentel D (1991) World resources and food losses to pests. In: Gorham JR (Ed) Ecology and Management of Food Industry Pests, FDA Technical Bulletin 4. Gaithersburg: of Official Analytical Chemists, 5-11. Piry S, Gompel N (2002) Présence en France de Neoderelomus piriformis (Hoffmann, 1938) sur le palmier Phoenix canariensis Hort. (Coleoptera, Curculionidae, Derelomini). Bulletin de la Société entomologique de France 107: 529-534. Rabasse JM, Perrin H (1979) Introduction en France du charangon de leucalyptus, Gonipterus scutellatus Gyll. (Col., Curculionidae). Annales de Zoologie, Ecologie Animale 11: 336-345. Ragusa E (1924) Gli Ipidae della Sicilia. Bollettino Societa Entomologica Italiana 56: 114-118. Ranger CM, Reding ME, Persad AB, Herms DA (2010) Ability of stress-related volatiles to at- tract and induce attacks by Xylosandrus germanus and other ambrosia beetles. Agricultural and Forest Entomology 12: 177-185. Rasmussen, S (1976) Traeborende snudebille, Pentarthrum huttoni Woll. (Coleoptera, Curculi- onidae) ny for Danmark. Entomologiske Meddr. 44: 107-109. Ratzeburg JTC (1837) Die Forst-Insecten oder Abbildung und Beschreibung der in den Wal- dern Preussens und der Nachbarstaaten als schadlich oder niitzlich bekannt gewordenen Insecten. Erster Theil, Die Kafer. Berlin: Nicolai. 212 pp. Reitter E (1916) Fauna Germanica, Die Kafer des Deutschen Reiches, V. Band. Schriften des Deutschen Lehrervereins fir Naturkunde, XX XIII. Stuttgart: Band. K. G. Lutz. 343 pp. Roll E, Dayan T, Simberloff D (2007) Non-indigenous species in Israel and adjacent areas. Biol. Inv. 9: 629-643. Roques A, Rabitsch W, Rasplus JY, Lopez-Vaamonde C, Nentwig W et al. (2009) Alien Ter- restrial Invertebrates of Europe. In: DAISIE, Handbook of Alien Species in Europe, Invading nature: springer series in invasion ecology 3. Springer Science + Business Media B.V., 63-79. Runge JB (2008) Otiorhynchus apenninus Stierlin, 1883, Otiorhynchus dieckmanni Magnano, 1979 and Otiorhynchus aurifer Boheman, 1843, three new weevils to the Danish fauna. Entomologiske Meddelelser 76: 69-78. Sacchetti P, Caméra A, Granchietti A, Rosi MC, Marzialetti P (2005) Prima segnalazione in Italia del curculionide delle palme, Rhynchophorus ferrugineus. http://www.cespevi.it/art/ rhynco.htm. 244 Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) Salomone Suarez F, Carnero Hernandez A, Marrero Ferrer M, Gonzalez Hernandez A (2000) Presence in the palearctic zone of Diocalandra frumenti Fabricius, (Coleoptera, Curculioni- dae). Boletin de la asociacién Espanola de Entomologia 24, 263-264. Sampo A (1976) An Australian gonipterine weevil defoliator of eucalyptus in Europe for the first time (Coleoptera Curculionidae). // Floricultore 13, 3 pp. Sampo A, Olmi M (1975) Un pericoloso neniico delle palme nuovo per I'Italia: Dactylotrypes uyttenbogaarti Eggers 1927 (Coleoptera Scolytidae). Ann. Fac. Se. Agr. Univ. degli Studi di Torino IX, 431-446. Sched! KE (1946) Bestimmungstabellen der palaearktischen Borkenkafer, I. Die Gattung Cryp- turgus Ex. Zentralblatt fir das Gesamtgebiet der Entomologie 1: 1-15. Schedl KE (1963) XX. Scolytidae von Madeira. Societas Scientiarum Fennica, Commentationes Biologicae 25: 154-156. Sched! KE (1970) Zur Synonymie der Borkenkafer XX. 272. Beitrag zur Morphologie und Sys- tematik der Scolytoidea. Annales der Naturhististorische Museum Wien 74, 221-231. Sched! KE, Lindberg H, Lindberg H (1959) Coleoptera insularum Canariensium II. Scolyti- dae. Societas Scientiarum Fennica, Commentationes Biologicae 20: 1-34. Schott C (2004) Sur la répartition de Xyleborus peregrinus Eggers en France et en Allemagne. Bulletin de la Société Entomologique de Mulhouse 60: 19-36. Schott C, Callot HH (1994) Trois coléoptéres scolytides nouveaux pour la faune de France ob- servés en Alsace (Xyleborus peregrinus Eggers, Lymantor aceris Lindemann, Phloeotribus cauca- sicus Reitter, Col. Scolytidae). Bulletin de la Société Entomologique de Mulhouse 1994: 67-70. Sebelin C (1951) Zum auftreten von Araecerus fasciculatus in Hamburg. Zucker-u. Susswaren- Wirt 4: 656-658. Sheppard AW, Shaw RH, Sforza R (2006) Top 20 environmental weeds for classical biologi- cal control in Europe: a review of opportunities, regulations and other barriers to adopti- on. Weed Research 46, 93-117. Silfverberg H (2004) Enumeratio nova Coleopterorum Fennoscandiae, Daniae et Baltiae. Sahl- bergia 9: 1-111. Silfverberg H (2004) Country records accidentally omitted from the new check list are added. Sahlbergia 9: 122. Smith RM, Baker RHA, Malumphy CP, Hockland S, Hammon RP et al. (2007) Recent non- native invertebrate plant pest establishments in Great Britain: origins, pathways, and trends. Agricultural and Forest Entomology 9: 307-326. Solari A, Solari F (1908) Segnalato come Asynonychus godmani Crotch, 1867. Bollettino Societa entomologica italiana 40:268. Stachowiak P, Wanat M (2001) Pierwsze stwierdzenie Pentarthrum huttoni Wollaston w Polsce, oraz klucz do oznaczania srodkowoeuropejskich rodzaj6w Cossoninae (Coleoptera, Curcu- lionidae). Wiad Ent Poznan 20: 33-41. Stauffer C, Kirisits T, Nussbaumer C, Pavlin R, Wingfield MJ (2001) Phylogenetic relation- ships between the European and Asian eight spined larch bark beetle populations (Coleo- ptera, Scolyltidae) inferred from DNA sequences and fungal associates. European Journal of Entomology 98: 99-105. Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 245 Strejéek J (1993) Curculionidae. In Jelinek J (ed) Check-list of Czechoslovak insects IV (Coleopte- ra). Seznam ¢eskoslovenskych brouku. Folia Heyrovskyana, Supplement 1, 135-152. Stitben PE (2003) The Rediscovery of Acalles droueti Crotch 1867 and Curculionoidea collec- ted on an excursion on the Azores: A Report (Coleoptera: Curculionidae: Cryptorhynchi- nae). Weevil News 16. 10 pp. http://www.curci.de/Inhalt.html. Targioni Tozzetti A (1884) Relazioni intorno ai lavori della Regia Stazione di Entomologia Agraria di Firenze per gli anni 1879, 1880, 1881, 1882. Annali di Agricoltura del R. Mi- nistero Agricoltura, Industria e Commercio, Roma: 1-645. Telfer MG (2007) Macrorhyncolus littoralis (Broun) (Curculionidae) new to Ireland. Coleopte- rist 16: 118-119. Teodorescu I, Manole T, Iamandei M (2006) The main alien/invasive insect species in Roma- nia. Romanian Journal of Biology - Zoology 51: 43-61. The World Factbook: Washington, DC: Central Intelligence Agency, 2009. https://www.cia. gov/library/publications/the-world-factbook/index.html. Tobin PC, Whitmire SL, Johnson DM, Bjornstad ON, Liebhold AM (2007) Invasion speed is affected by geographical variation in the strength of Allee effects. Ecology Letters 10: 36-43. Tomov R, Trencheva K, Trenchev G, Cota E, Ramafhi A et al. (2009) Non-Indigenous Insects and their Threat to Biodiversity in Albania, Bulgaria and Republic of Macedonia. Sofia: Pensoft Publishers. Tremblay E, Espinosa B, Mancini D, Caprio G (2000) Un coleottero proveniente dal Sudame- rica minaccia i pioppi. L ‘informatore Agrario 48: 89-90. Valkama H, Martikainen P, Raty M (1997) First record of North American ambrosia beetle Gnathotrichus materiarius (Fitch) (Coleoptera, scolytidae) in Finland - a new potential fo- rest pest? Entomologica fennica 8: 193-195. Valladares L, Cocquempot C (2008) Présence en France d’Otiorhynchus (Nehrodistus) corrup- tor (Host, 1789) (Coleoptera Curculionidae). L’Entomologiste, 64: 129-130. Welch RC (1990) Macrorhyncolus littoralis new record Broun Coleoptera Curculionidae, a lit- toral weevil new to the palearctic region from two sites in Kent England UK. Entomologis- ts Monthly Magazine 126: 97-101. Whitehead PE Zach P, Kulfan J, Cicak A, Cunderlik I (2000) Dactylotrypes longicollis (Wollas- ton 1864) (Coleoptera, Scolytidae) introduced to the Slovak Republic. Anzeiger fiir Schad- lingskunde. Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) 246 ‘ovary snosvgdodx pure snosvydogaatmojix ‘snospydoaojgd Yi saidads s9yxeS 01 04v7 nsuas snoseydoyAX WIA] sy ASN AK, ‘souti4joos pure sourpodAreyd adaoxa ‘ovasey ueyi snoseyddjod arour uayyo are syynpy ‘siqey [eAIe] YI JO ssoppresai Was pue Fes] uO ATTeUIIIXS pooy AT[eIJOUDS sayNpe ISIMIOYIC) “OvAIET ,01v7 nsuas snoseydoyAx 10 snospgdoyputsads YIM saidods JayI0 AueUT JO syNpe Op se ‘ovArEy se poo A]feIO9UdS syNpe sauTATOOs pur sourpodAreyg y (S00Z) St9quant VN ‘MS ‘OU ‘Ld “Td (eds) (LIST qeunses)) “(ZOOZ) Yosuqey pur [ssq ‘(0961) (QBa0RATRII qil ‘GW ‘LI ‘NH UH Wa aesioduay| snoseyd wunpypa (uordvprdsy) aopsuy ‘(F661) Te 1 2zeqqy :do) avsoe vagy | “WA TI} “AC “ZO ‘HO ‘DE ‘LV] Dd ‘0961 -esy| — -ofyd| oy uordvpidsy (S007) MS ‘TS ‘SU (eds) (€€81 Sioquait MX ‘(FOGT) MouwmTyeo[ (avaoRAeY] qi| ‘OW “Id ‘AW ‘OIS-LI ayeJoduray. snoseyd yeyuoyA5) MAISOALAANI ‘(ZTOOT) Yosuqey pur [ssq :do) avsos vayy| “WA ‘TI) ‘NH “ZO ‘HD “Dd ‘IV! Dd ‘F061 -PISV -oiyd| Vy (UodqUdIOI) UOLIUIIOIy sepruoidy (sjonpo (TS61) UPq9S “(066T) TP Peroas “szsuauss (ads) Jo ADYIUIIDIGY ‘(/Z61) nInydyy vyjauvy ‘vaffoy Tdi LAP LI Jeordosy,| snoseyd (LOSI sniorqe) ‘(ZO0Z) Yosuqey pur jssq| :dd) sionposd pasos If} “aD ‘Wd “Ad “Dd ‘LV| AC ‘TS6I -eisy| -oidyd| vy avaffoo sndavavLyy SEPIMUREY. saroads Arupfqns | Ajrore,y adoimy Ur siiqey yeyigey{| selyUNOS papeauy =| proda7 IST SuIpeay Ssoouol IPU snjejg ‘snospydiod djge1g :ddy ‘oro Jo Ajrurey uO ‘eI9UdS DUO UT sisoy syoRe ATTeUTIOU sotdeds oy jt Surpuadap ‘(dd pur do ‘duu se parerasiqqe) snosvgdjod 10 snospydosyo ‘snospqdouou se UIAIS SI ISULI DATILU UT YIesIg soy ‘osuUeI JATIVU UT YIeII AsOY ‘sIayoeIq ud9MI19q ‘PUP ‘SdTIJUNOD PopeAul UT SIsOY PepsOdal :sisoH] *([] xIpusddy das) STIN(Y 0} Jofor SUOTIRTADIQe {SaTIIUNOD popeAuUT UT syeIgeY yeUqep] “UoNvor[gnd assy JO ‘uaumdeds UMOUY ISI JO sotUNOD pur aiep :odoing UT proses AST “sIayoeIg UIdMIOq PayIdeds aq pynoo asus aaNeuU ‘[NJosn Jr ‘asueI pozipsrepurIs suTeUOD ppay sup rodueI SANeN *, (suaas wiyed se yons syeraieur Apoom SUTPN]SUT ‘POO dpIsUT poo} pue o10q searey) snodvgdojdx [AX (I3uNJ sToTquIAs SuTkedap-poom UO pooy ATUTeUT pue poom aprsut sopeuray Aq pasog sarsaypes ul sar] aearey) snospgdozaauojdx duax (spoes Ajjerouas ‘sueS10 aanonposdal apisul poaj pue s10q seasel) snospydoywusads ads (JouTUT 1001 dq Pynood sa8eIs ApIed ‘s1001 UO Poaz AT[EUIOIXS IBAIL] ULIULIIONQNS) /asMOLG 1004 MGA (SIOOI SPISUT Pod} PUL BI0q IeAIL]) 420g 1004 OGA (37eq JOUUT 99] IPISUT p22} puv d10q seAre]) snosvydoaojgd \yd (JOuUTUT dq PfNod sa8eis ApIea ‘sreyIdsaiwd sou sv ‘SUIDIS JO SdARIT UO pddj AT[eUIOIXS deAIe]) Masmo1g wass/fvay MQ| (390181001 pue q[Ngq ‘Te]JOo ‘s3im3 ‘sayoueIg SopNnpuT Wis ‘saavoy JO suaIs JUKTd Jo onssm APOOM UOU SPIsUT Pooj pue 20g aeAse]) sHosvYdiguay ABY ‘srigey SuTpoey ay Ayioads siayoesq udsMIaq sUOTIRIADIgge :sligey SuIpsa,y ‘9zuadsosdus = adoingq of uarye w :snyeig ‘a[qeyreav UOU wep W/RN |, So1IUNOD* yerads se Ayareredas pores are Spurs! URIURIIONpoyy pue Muepy urews ‘(| x1pusddy das) suorsus1x9 YUM ‘QO E OS] 0} Jofor suoNeIAdIqqe sapoo ATIUNO’) *,93eIs SuIseWMep sJOW dy} AT[eIDUIS oe YIYM ‘OvAIET JO SOY} dv sIsoY pur sIIqeY SUIpsa,j ‘suarTe pauinsacd ayeotpul systioisy ‘edoimy og uarye soiseds vaplouolpNsinZD 9y} JO soMsTIBIeILYD *|°7°8 VIGUL 247 Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 (S007) S19quaNT A “(€661) yo2f11§ “(1 007Z) WUE pure yermoyporis ‘(9/6]) Uassnursey “(PS61) UURWIQOH “(Z00Z) ‘Je 19 JosepyosuyeH] ‘(€361) AISA Ta IN. (JAX) uuReWDpaIq ‘(86 1) Ng (F661) (poom Surkeoap ‘LI Al ‘AD ‘Wa ‘Sa snoseyd PCR] UOIsEyo asnig ‘(Z661) PIfPSO pure izzeqqy :dd) poom Surkeoop Lf] Md “Ad ‘HD “Ad SIV] dD ‘PSs | eiseyernsny -o1dyd V LUOJING WNAGIAVIUAT (x) (0661) WPA (poom Surkeoap sacavia (O88I UNoIg) syv07477 ‘(ZO0Z) JFPL ‘(ZTOOT) SHIOW :dd) poomayiip Al ‘AD! AD ‘Z861 | eisepesasny -oiyd| Vy SNOIUAGLOLIDIN (14x) (L261) (poom Surkeoap aS aT snoseyd (O88 Unosg) JouUOT),Q ‘(SQOZ) Te 29 FH] :dd) poom Surkeoap ‘AD ‘Sq ‘NC ‘SHO! AD “PEGI | esepesny -oiyd| Vy unfns untugdony aS ‘Ld (14x) (8661) UP “(S00Z) ‘Te (poom suydesop ‘NH “AD ‘Ud “Tva-sa snoseyd (0881 Unosg) 12 TTTH ‘(Z00Z) Yosuqey pur jssq] :dd) poom Surdesap ‘Sq ‘ZO ‘LV ‘CAV! FD ‘ZE61| elsepensny -oiyd| y autifuor wnkugdony (860) (pees (@ds) JOWIGIA\ Pur UdTIG O ‘(Z00TZ) vasdag “ures :dd) CVW-Ld| GVW-Ld| eueury| snoseyd (SES yeyuaTfAs) SIIIOY ‘(FOOZ) ‘Je 39 Opsambzy | sionposd posoas ‘ures3 ‘AD ‘NVO-SA ‘T261 YON -oiyd| vy avzt1o snyiydojnv’y «(0981 Uorsey]oN ) (S661) SNUDIZIUOU BIOIeL) pue JWIOIG) ‘salosy sop (NVD-Sq)| snoseyd (snulqiosnvuly) IPEPISIOAIPOIg EP SOpep op aseg | (wjosjvs ‘vpavns) VIN CVW-Ld ‘OZV-Ld V/N BOY -oikyd| Vy SNUIGLOANDULY avuluosso’y oepruornoin’) (SOOT) SI9quaNTA “(S661) ULE “(Y86T) UIE “(Z007) VN MS ‘Su ‘OU IMzeY] “(606T) YrorRy “Td “IN ‘CW ‘LI ‘NH ‘(€00Z) PIspPINUY PUE Psmoyzoyy WH ‘DAN-AUD UD (eds) “(ZOOT) YOSNGEY Pur [ssq “(€86T) (2OORATEYAT “Ad UOOU Ua ‘SA syeraduray,| snoseyd (ZO8T J?!4110) IY “(F661) ‘Je 39 zzeqqy :do) avsot vay TY KD AO Oe ey -PISy -oikyd| oy | aussostsuo, uordyjvdogy asuUeI syiqey satoad¢ SIIUIIIFOY a SaIuNOS popeauy =| proser3s—T | oaneN | Surpsay | snieisg Arupfqns | Ajrore,y Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) 248 (9261) edures “(6Z61) UlIJag pure asseqey ‘(9G66[) PATeg ‘(€00Z) PION “(9661) O10 249d pure erpsueyy “(7661) PISUe (0002) FUIOIO pur opEYpeY| (“q]) ‘(6661) OTD “(9Z61) suOzTy (smadiqvong Ld ‘LI YOO snoseyd CEST peyoy|Ar ‘(Z6G61) PIJPSO pure izzeqqy :dur) snadiqvang Tl Wd ‘NVO-Sa ‘SH| LI ‘SZ6T | eisepesisny -odyd V SNIV]JIINIS snaagqquor) (q]) (¥8I (avaoerpodouayy aS “IN ‘AT ‘IT ayeroduay,| snoseyd uewoyog) syvnbavut (FOOT) MeS222 do) xadieapy ‘AD Ud ‘Id “Nd “Ad]| aS ‘OVI -eisy| -oidyd| oy sdouosdouadsy apu1ruoja’) ,PIQ] WOIseTTON, (YJON)| snoseyd snqvsadnvdap (0007) FuIOIE pue opeypreyy (ava0eqe]) V/N NVoO-Sa VIN voupy| -oikyd| Vv (snigay) snaqaKy *C£61 (YON) | snoseyd ayoeisnpy 72auz0jup (0002) FuUCIE Pure opeyre] (aeaoeqet) V/N NVo-Sd V/N vouyy| omy] (sniqany) sniqauy, (7007) jedurory pur Arg ‘(QQ0Z) FUIOIG pue opeypryy “(9007) UeWIpelt{ (eds) ‘(6661) [PAT pur edezeie7-osuojy (x2U204) CVW-Ld ‘OIS-LI‘LI] = OIS=LI] (ION) | snoSeyd (S61 WueWUyOH]) ‘(Z661) E[J2SO pure Izzeqqy SISUIIADUDI X1UIOY “TI WA SNVO-S4H ‘SH ALT ‘T661 POLY -o1dyd V studofiard SNULOJIAIPOINT (eds) (9161 (LOOZ) ‘Je 19 JISC ‘(€Q6T) ‘Te 29 (vdutsS ‘snuixpLg vououry| snoseyd Aaqypreyg) wfogosig apnory ‘(Z00Z) Yosuqey pur [ssy :do) snurxvsq ZI‘) Td ‘IV| ‘Id ‘1007 YON -oidyd| vy (sapodusiT) sapotusrT avUuLuUoYNIAN’) (TY¢) (O€8I (S00Z) (soar Jeaypeoq volloury| snoseyd a] [IAousA\[-ULIaN4)) PUDSZLIEP[OL) pur eSezesle7-oOsuoly :dd) pywipys snurg Sa ‘€00T 629°) -oiyd| Vy sypsauuny sauagdakgy apuiqouhgsogdh.y (YJJON])| snoseyd xLOQT Worseyfory, sdoin’y UT asuel syiqey satood¢ SIIUIIIFIY . ae een SaIUNOD popeauy §=| proser3s—T | saneN | Surpsay | snieig Ajrupfqns | Ajrore,y 249 Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 (TAX) (sopepeod-y snoseyd ZLQ8I 2008eg (FZG61) IsseAo7) :do) sapepeodéz LI ‘PZ61| eisepensny -oiyd| vy sapioajaue snsAduacy avunojy «(TPB snoesye,y) (YON) | snoseyd vsoquaumo4 (v1NNOT) (000Z) FOI pue opeyrry (W/N) V/N vouyy| — -oidyd] sesdoplaavpour POUENTT. (q]) (VES (YJON)| snoseyd ueWayog) szuzyaqvst (0002) FOIE pure opeyrre (V/N) V/N| _ V/N NVo-Sd V/N vouyy| omy] (snuopuuy) snuoq (q]) (HON)| snoseyd «(898 | 1oWwoldeD) C0007) FeO PUB. Operoe yl (V/N) V/N| _V/N NVO-Sd V/N eoryy| —-oudyd) Vv xen} (suo) snuog avuLr1adapy (cp) VE8I (000Z) HOI (GVW-Ld)| snoseyd Jequaypéry seuuadyvy pure opeyoeyy “(€007) BID (V/N) 47)nI1Ua07 V/N NVO-S4 V/N BOUTY. -oyd]| oy (Yu0IIS) Duo (4q2) (shvue Baz ‘S2|qeIBIA OZV-Ld| eoueury| snoseyd OPS] UReWDYyoY (SQ0Z) ‘Je 29 sodsog| ‘ovaoeqey :ddy) y/N Dy‘ OZV-Ld “CQOT Coy sy -oiyd| Vy puLojomnay snqovdnupy aS “AVW-Ld ‘OZV-Ld ‘Ld “LW (€007Z) HeqnaS “(806T) (S990) ‘OISLI “UVS-LI (Aq) IreJOS pur Iejos ‘(900Z) WoO IMyz ‘speyUsUTeUIO ‘LI Wd SNVO-Sa POLIOWYy snoseyd ZO8T YoI0IZ pure opeypeypy ‘(0GG1) UURWO] ‘vsoy :dd) W/N I “TV-Sa ‘SH ‘MNC| LI ‘8061 SRD -oiyd| vy 1upupos sngsuoulsy avulMlyug (7861) J9HNosuO/y ‘(0007Z) FuOI_ pue opeypepy (aap) (®800Z) ‘Je 39 UleuUtID®) ‘(6007) (spoom NVO- voroury| snoseyd 978 Jsayua0yI¢ ueUIpardy “(€96][) Aysmoyporyeg | ‘satqeioSaa :ddy) W/N| OOTL TI] “Wa ‘NVO-SH “TVE-SA 82D -oiyd| vy SIAISOATISOI SOLIPONISTT aSUeI suiqey satood¢ SIIUIIIFOY SSOP] yeyIgey{| selUNO. pepeauy $ | proderjs—T | eaneN | SuIpeaz | smei¢ Ajrmpfqns | Ajrore,y Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) 250 (74) «0981 (viqaogdnq CVW| (NVO-Sd)| snoseyd UO sETON, wnzLoqvIs1d (ZZ61) UVospeess] :dur) viqvoqdng 8d CVW-Ld| +Ld ‘7261 vougy| -oidyd) vy unspivungdy (uy) (viqaogdnq NVO-Sa snoseyd «£761 HoywIIAIT (086) Uosyavssy :dur) yiqsogdnq 8 ‘O76 BOY -oiyd| vy ladIvuL wnagavuvydy (uy) (21qvoqdng GVW] (NVO-Sd)| snoseyd «0981 WorseTJoN (ZZ61) Uospaessy :dur) zqsogdnq oy hd “2261 POLY -oiyd| oy 40j021g uinsgysvupy dy (794) «0981 (viqaogdnq NVO-Sa snoseyd UOISET[ON\ N49U1I91G (ZZ61) Uosfaessy :dur) zqsogdnq ‘0981 POLY -oiyd| Vy unsgyapuvy dy (uy) (viquogdnq NVO-Sa snoseyd OOS] UOIseTTOA (ZZ61) Uospaessy :dur) iqsogdnq ‘0981 POLY -oiyd| y auiffy wnagiavuvgdy (sooq1 FeaTpeorq :dd) votssad snunsg (durx) C/8I ‘unurysvr0ddiy snoseyd Hoyyory s7yposqns (6007) ‘[e 39 Foor] snnIsay LI ‘8002 eIsy -oi4yd| vy SNULPOISOLQUiy avurhjors (soo) JeaTpeoiq :dd) snjndog (000Z) ‘ye 19 Ae[quiary, (S007) TE? ITH “(8661) 29998H i (C661) BHD PUR JOO (VIN) WIN a SIDUDIIFIY SdTIJUNOD popeauy (episdopriaig :do) eptsdoprag} —QOT dD] dD ‘8661 V/N odoin Ur Prosar IST ROLIOWY SRO viseperisny (NVO-S#) POLY asuel DATIVNT (d ux) snoseyd -o1dyd (eq) snoseyd -o1dyd snoseyd -o1dyd suiqey SuIpeay V snjejg (Sos sindeyd) snqvinu sndiaydvdayy €0GI ssnoysa1ey, SUAPNAJUL SNILBVAS x£961 JOIpnoy sduaqpuy (sasaporydiasving) sasapoqg das satoad¢ Ajrupfqns | Ajrore,y 251 Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 (SQ00Z) SIOquONTY ‘(Z66I) ‘Te 39 PUTeYTeA “(OT0Z) (durx) (S81 yoooey pur [epuaxIry “(8661) (stazyuoo aS “IN ‘LI “Ud ‘TA vonoury| snoseyd YoU) SMIMvIsaIDUL qoooey “(GPG1) Aysmoyoeeg :dd) snurg ‘vag ‘SH “AC “ZO ‘HO “Ad | Ua “Eee! MON -odyd) oy SEPT AT OU LDS) ) (VIpUD] SNANT “VIB oyerjoduray. sae 806] JeAowyoNS (F00Z) YozIUyy supjenf{ :dd) VIN WA ‘HO| WA ‘F007 -eisy| -oidyd| ys sesuadaypuig saqa0z0duq (0007) (aeaovuaeoRIC] ‘Je 19 peayary pM ‘(C/61) MHTQ| ‘svaovsery :do) osvup (ads) pue odures ‘(h66]) BOAON pur] vuavomc ‘oea0RD2I1V (NVD-Sq)| snoseyd (POT WoOIseT[o\ ) olopsiequioy “(6h6][) AYsmoyporyeg | — ‘seswazupuva x1UI04J POLY -oidyd| oy | sypostsuoy saddagoplgavq (¥661) 2O[[2D Pue VOUS “(400Z) NoOYPS “(OLOZ) ooo] pue (durx) (C161 J[epuayy ‘(GOOT) WNos2]qoN (avoorSey snoseyd JONNY) sauvopog pur iosnog ‘(gQ0Z) ‘Te 19 OIsIpny :do) snauan¢) WA ‘0961 eIsy -oiyd| Vy uorpidigsoj’) (uy) (viqaogdnq NVWO-Sa snoseyd (ETS YOywrIIAa7) (0861) wos|aessy :dur) yiqsogdnq QT NVO-Sa ‘8761 BOLY -oiyd| vy IpnUNY sn4gzoqgoajo’) (Spas CVWW-Ld (F881) IIEzzO], TUOTSIeT, ‘(6S6T) Apoom ‘avaav01y ‘LW ‘OIS-LI “UVS-LI (ads) Te 39 [Pups “(€961) [PeyPs | :dd) seaovsany ‘sien ‘LI ‘NH WOO pesidongns| snoseyd (TO8T smprsqe,y) “(OLOZ) oooey pur jfepucysry | sdovavuvgy ‘x1us0gg WA ‘NVO-SA| .LI‘P8sgi} ‘qeordosy, -oikyd| oy | ypsadylgavp sadtugos207) (spas Apoom ‘seaovoory :dd) DUIVIVACY ‘DPIDLIOIY (ads) "sqo ‘VIUOIBULYSYY\ CVW-Ld Jecrdonqns| snoseyd (THE, Sunusofy) sod yepuaxiny “(Z861) 143g ‘x7ua04 ‘OZV-Ld ‘NVO-SA qeoidory, | — -orkyd| yi sdvqdod.na sadi.sgo090) (uy) (viqaogdnq snoseyd x(SZ8T Hoyyory) (9F61) [P24?S :dur) viqsogdnq vO -oiyd| vy MUOISD]JOM SNBANSI’) asuel syiqey satoad¢ SdIUIIIFOY ae eee SoIUNODS popeauy =| proser3s—T | saneN | Surpeayq | snieig Arupfqns | Ajrore,y Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) 22 (durx) (soon vouloury| snoseyd (SSSI Your) (800Z) ‘Je 29 Jepucysryy | _ Feaypeosq :dd) y/N LI} .LI‘Z00Z YON -ouyd| vy YVUL WNAGIADUOIT (day) Sngny ‘snI4aN() “VILAT ({yd) HCRI UoIseyoA, (€661) POAON pue| ‘wzquogdnq ‘vauvysv’y (NVD-Sq)| snoseyd aUDINGIpUBUL OJaprequioy ‘(QGG6]) UOsperss] ‘wniag ‘snujpy CVW-Ld “dD ‘Sa V/N POLY -o1dyd V UNAGYIAVELT (ey) (vpiqaogdnq snoseyd ,OOB] UOIseTTON (0661) Uospeessy :dur) yzqsogdnq CVW-Ld ‘NVO-Sa V/N voupy| -oidyd) y | wnqwusvur wnsgyvdrT (avoorSey ‘aea0eqe.y ‘IPIOPIOJ| ({yd) ‘seaoriqioydny (NVD-Sq)| snoseyd 4PSQI UOIseyfon (0661) Uospeessy | dd) suon7 ‘vaursyy CVW-Ld ‘OZV-Ld V/N POLY -oiyd| Vy UNJANI UNAGILVULT (Ty¢) 4VS81 UOISET[ON (WJON)| snoseyd uLnqVINIAAGNIIG (0661) Uospeessy | (snunvT :dut) snanvT CVW-Ld ‘NVO-Sa POLY -oiyd| vy UNAGYIAVELT (Ty) (vista (NVO-Sd)| snoseyd PSB UOIseT[oN (€96 1) IP°4PS dur) viswuasy CVW:Ld eonpy| — -ordyd| oy | aupsquanin winagasvdrT (Z00Z) ‘TP 3° 11°u “(HZ6T) CVW-Ld Cwy esndey “(S661) Hd “(7007) ‘OZV-Ld ‘LN ‘OIS=LI Yon +)) (eds qyd) IINODITGON ‘(QOOT) FOI pue ‘LI “Tl WOO POLIOWYy snoseyd OE8T POOMsa/\\, opeppewl ‘(6F61) Ajsmoypereg (ddy) v/N Wd ‘NVO-SA ‘SA SRO} -omyd| oy | smagpnsa snuauaqrodtpy Cury YON +) (14d) so10sy sop vonoury| snoseyd (I6ZI J0zueg) IPEPISIOATPOTg EP SOpEp op aseg (ddy) V/N CRE -oiyd| vy avypnss snuauag1odf] (14d) (8281 snoseyd Foyyry) s1770I14gvos (6007) YoZIUS pure pnsjipy (dd) snonz eIsy -oiyd| vy srypgdusoddy asuUeI syiqey satood¢ SOIUIIIFOY a SaIuUNOS popeauy =| proser3s—T | saneN | Surpoaq | snieig Ajrupfqns | Ajrore,y 253 Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 ‘(OLOT Oo] pur [fepusysry]) psonponur 9q 02 1YSNoY Mou st Inq ‘sdosny 0} sane se poyean ApuaoaI jUN sem 1272a{d snsogaly (snuly (durx) (9981 Ays[nYysioyp) ‘saomi Jeaypeosq :dd) snoseyd SNJNISNISSVLI (€QOTZ) ‘Te 29 OTYDoeUUAg ynbyts VIuoqvAa’) LI! LI ‘€00Z rIsy -oiyd| oy snapupsophly Vn MS ‘Is “Td (durx) (ZE8T) Singoeziey | (sd071 Feaypeogq :dd) SDE Piel Mee ide Sal snoseyd (ZEST sinqaziey) ‘OLOZ) oooRd pur [fepusxsny | sande ‘yng ‘snupy “AC “ZO ‘HO ‘Dd ‘LV] AC ‘Z€s1 esy| -omdyd| oy miafd snsogahy (durx) (sdaz1 JeoTpeosq snoseyd CL8T HouyorYy (800Z) Hoos] :dd) gsmauan) “VIN LI ‘Z00Z eIsy -oidyd| Vy snqplqy snsogay (uy YON +) (durx) (ssoi Jeaypeoq vonoury| snoseyd 8981 Hoyyory (L007) 49z]0H :dd) vuaspaviq TLV ‘9002 CRE.) -oiyd| vy stuiffy snsogaly (soo) JeaTpeosq :dd) soon JeaTpeosq ‘smjdu07y Wn ‘MS (durx) (OLOZ) Hose pure epoxy ‘sngian?) VYLT. “AS ‘AM “Td “IN ‘AH ZO snoseyd ZOGI WSU 2B Poy “(ZOOT) YOSNGeY Pur [ssy | “MS “vyniag ‘snury ‘SH “AC “ZOD “HO CLV] ‘LV ‘Z861 Pay -oidyd| oy snypnuatw snupsogaly (0007) (144) Aayoraodog pur werysjapuryy snoseyd F681 ploypuryg “(800Z) PAodesyepy (satgy :dut) saigy NN ‘0002 eIsy -ovyd| vy snuuxoad sng dvssog (yd) (snunag voloury| snoseyd (ZSQI step) (FOOT) ‘Je 29 OrysoeuUag| :dur) vuzzoLas snunsT LI ‘v00Z YON -oiyd| Vy SIADUIULY] SNG1AJ090]4 J (avooessoidn7y :do) avaoessaidn7y ‘sesuauiga snaadiunf ({yd) (60072) ‘seapdlaavulvy’) snoseyd F681 ploypuryg [eeroyl ‘(676 1) Aysmoyoryeg ‘vingy, Cr) ‘VA UWA ‘OVGI PIS -o1dyd V SIPNA SNUISOIOIG sdoin’y Ut aSuUeI syiqey satood¢ SOIUIIIFOY ee eee SoIUNOD popeauy =| proser3s—T | eaneN | Surpsay | snieig Arupfqns | Ajrore,y Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) 254 (S007) Te 39 TBYDIKS “(9007) VAVW ‘(900Z) ‘Je 39 seUIPpOIUOY ‘(666T) yeyayy ‘(Z00Z) 28100-NOCaY OIS
  • S “(Z861) TYBsHG (6S61) ‘Te ° [Pups “(€961) IP94yPS “(Z861) TSU (ZO0Z) Jopuexe[V (6S61) TE 39 TPPYyIS “(€96T) [P24PS (6S61) TE 39 TP2yIS “(€96T) TP24PS (ZO0Z) JOpuexe[V (SNL :dut) snanj “unigaq (snurg :dut) snuig (avooevurg :do) V/N ‘(avaoeqe.y ‘wntyofisy :do) vauvysy) ‘smAnvT ‘snsi’) (snurg :dut) snuig (vast :dU1) BAIT LA ‘CA La) ED CQVW-Ld ‘OZV-Ld ‘NVO-SH dD UPSURLIOUPIl qsa\ ‘odoin eIsy ‘URdURIIONp2y] ‘adoing eIsy ‘URIUPIIONP] ‘adoing UPSURLIOUPIl qsa\ ‘odomy UPSURIIOUPIPL jsa\ ‘odomy eIsy ‘odomny ({yd) snoseydorAyd ({yd) snoseydorAyd ({yd) sno8eydordyd (oqi ‘tyd) snoseydordyd ({yd) snoseydorAyd ({yd) snoseyd o1Ayd ,IEQT Uosyoiry soy snsogodly] <(Z8Z1 snioliqey) vpsadiusy sndanjdEy (ELST TeyuayAD) suswsyud sdodunphy x(ZO8T wieysiey\]) sninasqo snumsyydE] ,JEQT UOSYoIIY seuvauy sagsvydEy OQ] UOsYysITY sazvjnaiung sagspylP] (9002) ‘ye Jo WielYysjopuryy ‘(/86T) iysg ‘(ZOOT) Jopuexe[y SIDUDIIFIY (snurg :dus) snuig s}sOP] a) veNqeH CQVW-Ld ‘OZV-Ld ‘dD sorjunO0s popeauy PISy “URIUPIIDN Psp ‘adoingy a3uvs sANeN ({yd) snoseydorAyd suqey Surpeoy OCR] UOsypINY sugvnuayy sassvydEy sataadg Aqjunfqns | Ayyorey 265 Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2 aavy poyusp! os susurdeds ‘orwapua solozy ue IYsIIg msuoftaj1o ~ Se (CG6] BOIeD pue TWOI_) spurysy AreueyT oy) WosZ poasodas ApoarsOoUT seM so1dods sTYT, (2861) 1481g (son) avaoesoy :do) V/N ‘19QMD gf Saideds URdURIIONPI/\| UOUTUTOS dy) 01 SuOTIq Ady} pure TfepusyINy Aq poururexa ud0q PISy “URIUPIIDU poy ‘adoinq ({yd) snoseydorAyd 6 x(STST JIN) susopnsns sngtjoay (S007) ‘Te 3° [EH (S007) ‘Te 3° [EH (snug) :dur) snug) (snug) :dun) saw) di ‘VA CES) SS) odomny adomy ({yd) snoseydordyd ({yd) snoseydordyd (Z8Z1 sniprige,) snaps sngdjors 6981 sindeyD szaayy sngijors (6961) Wosprss] (S661) PH¥d (sso) JVIOESOY :do) SNUNAT (Suu) :dur) ssnuy) “VIN Vd “SD “EEC eIsy ‘URdUPIIONP] ‘odomy UPSURIIONPIP| qsa\ ‘odoin ({yd) snoseydorAyd ({yd) snoseydorAyd +LV8 1 ayfAqusypy-ulany) yupalupy snqtjoay (POST HOUYSIY) 22z1vMly sn1qoI AI (TOOT) Jopuexo[y (766 19) ynyposzjoy] (avooevutg :do) W/N (vaatg :dut) vastg (UsoIsea “UIZYIIOU ‘yerUa9) odoing PIsy ‘(UJoyIIOU) adomnyq ({yd) snoseydordyd ({yd) snoseydordyd (8SZI snaoeuury) sugqdvsnod sngdwsqog I@6l Fesiatssadg zgpuveava snsogig dogg (OO0Z) FHIOIG_) pue opeypepy (€96T) IP24PS (000Z) FuIOIGE pure operpreypy (Gie)-2)(@) :do) gava0"21Q *V/N (avaoeqe,y :do) snsihy (avaoeqe,y :do) gavaoeqey "V/N ZA ‘CA Ld ‘GA UPSURLIOUPoPl jsa\ ‘odoin UPSURIIOUPIPL qsa\ ‘odomy UPSURLIONPI] SIN ({yd) sno8eydordyd ({yd) snoseydorAyd ({yd) snoseydorAyd x(88Z1 preusog) SIPLOIVGVADIS SNGIAJOIO[G T x(TOST Ureysieyy) snpgappopogu SNG1A409O]G x(G88 I JPANeI) $2470IS149 $NGIAIOIO]G (F661) LOT(S) PEE: BOWS COONS) yosiiqey pur [ss ‘(S007) yINOdI|GON pure 1osnog (0007) FuOIE pue opeyoreypy ‘(ZO0Z) Jopuexe[y SIDUDIIFIY (snuixvsg :dun) snuxvLg (aeaoessardny) :do) snaadiunf s}sOP] SD ‘Vd SD ‘Vd veNqeH Ma ZOe LY €D ‘NVO-SH sorjun0s popeauy eIsy ‘(ujoqsea) odomng UPdULLION po jsa\ ‘adomny aSuvi sANeN ({yd) snoseydorAyd ({yd) sno8eydorAyd suqey Surpeoy IGS JOY SnssvINVI sNq1Aq0I0]4 J (CCST Stisog) avlngy snuts0s0] gq sataadg Arumpfqns | Ajrore,y Daniel Sauvard et al. / BioRisk 4(1): 219-266 (2010) 266 "11UASAXDS "XY STV Wey POULIYUOS pur ‘(CGG6| PION) pue TWIOICQ) sugdusojty “y se pouTUTIaIap APUadaI UaUTDAds dU0 paredoy [[epuayID] ‘sty AFIIOA OT *(OZ6T [P2yos) suqduusojdx “y yo uiAuOUAs JoTUNI & se Z2ZUasaxHS “Y JO YUSUTIVAI] UdyeIsTUT ATID UL WOT] WdIS 0} SUIDAS “ZZUasaxDS *Y JO DDUASqe ay] pue “(FOOT ‘Te 29 Opsarnbz] “QQOT THIOI_ pur opeyepl ‘CG6T BIE pur TWIOIC “GCG ‘Te 19 [Poyos) sist] sa1dods spurysy Areues ye uo sugdpusojlx “y Jo s.uasaid ay, ‘(exyep poystjqndun ‘qyepusysry) sso0p zzuasaxps "y seaIOyM usaIsed DY} Wo astyerdods yeo ue ‘(gZgI Aes) sngdmusojx snsogaly ‘sngdvisojdx snsoqady se spurs] AreueD sy) UT popsosar AyJadosduat usoq sey so1deds sty], suo] & Joy dn paxru udeq pey sardads om) ay) se (8007) H"d (stegsaagds snug :dur) szugsaagds snurg SSUANAISAD “J. ITE 666] Ul [[epueyD] vISy “UPIUPIION pop ‘odomy ‘(adorn ur aJayMasya JO) OSejadryose ay WIOIF sUOTIDITTOD JUddeI AUY UT INDDO JOU SsOp ‘saIeIg paul) II SUINAISOP TO} puodsais09 SPOS Ife yuryy 3M SUIT} (ads) snoseydordyd Aq porxsa]Joo susumeds ing ‘vpsadiuid ‘7 01 Jajor eILOpeY\| WI spIoder ApIEY 9, (Z8ZI SNIDTIQR) Sap10gvjaqIV S1LaquLL’) seprysAuOUaNy (sussangny UvIUPITDNPI (000Z) FOIE puke opeypeyy ‘snaadiunf :do) Y/N V/N asa, | (eds) snoseydordyd|] (Q¢g] eqny) smsuaasune snosipouvyy UPSUPIIONPoAL x(SERT eyuaTAy) (000Z) FWOI_ pur opeypeyy (wnsgucT :dut) Y/N V/N ‘adomyq | (soy) snoseydordyd SnINpIILU SnYaUUvULY IAI seprAqdourny UPIUBLIOUPIY] (OO0Z) FHIOIG_ pure opeyprpy (V/N) V/N V/IN NVO-Sa ‘odomy snoseydorkyd] (LOST SMIoIqey) smvyIULY SvIOLT seprmurysiyy UPSURLIOUPI] QC8T (O00Z) FHIOIG_ pure opeyprypy (V/N) V/N ISIN snoseydorkyd | jeyuarpAry szvuorpiua snsogdouagds seprisoyydodIg (sIaJTUO PIS (6561) ‘saavatpeosq :dd) ‘URIUPIIONP] (durx) H(ZE8I1 Je .19 [Peyss “(Z861) WSIg | vauvisyD ‘snuty ‘snANVT ZI ‘adomy snoseydoikyd BinqgozeyY) Wuasaxps snutsogahy (S98T (C961) [PeyeS (snurg :dut) snuig| ZI ‘ED eisy ‘odoiny | (tyd) snoseydoikyd UOISET[ON ) Suansqsap i: sorUunOS satoad¢ SIIUIIIFOY ssoP] | JeIQeEY popeau] aSuvs sAneN siiqey SuIpeay Ajrmpfqns | Ajrore,y