Contribution No. 65 LIFE SCIENCES ROYAL ONTARIO MUSEUM UNIVERSITY OF TORONTO

RANDOLPH L. PETERSON

A Review of the Bats of the Genus Ametrida, Family Phyllostomidae RANDOLPH L. PETERSON is Curator of Mammalogy, Royal Ontario Museum, University of Toronto, and Associate Professor of Zoology.

PRICE: 75 cents © The Governors of the University of Toronto, 1965 PRINTED AT THE UNIVERSITY OF TORONTO PRESS Issued May 25, 1965 In 1847, J. E. Gray established the genus *Ametrida* with *Ametrida centurio* as the type species on the basis of a single specimen in the British Museum (Natural History) from "Pará, Brazil". The second known specimen was obtained by the Leiden Museum from Surinam and reported by Peters (1866). The third reported specimen was a topotype (Thomas, 1901). According to Sanborn (1938) his report on a specimen in the University of Michigan Museum, from Obidos, Amazonas, Brazil was the fourth known. Subsequent records were reported by Goodwin and Greenhall (1961) listing one specimen from Caripito, Venezuela and another from the Gulf of Paria, between Venezuela and Trinidad. The seventh specimen to be reported was from Surinam (Husson, 1962) followed by two additional records from Trinidad by Goodwin and Greenhall (1964).

In 1894 a specimen in Boston Society of Natural History Museum was described by Harrison Allen as *Ametrida minor*, with the locality unknown, although G. M. Allen (1902) later established that the type locality was quite probably near Paramaribo, Surinam. The second and third specimens were not recorded until Husson (1959) reported on a specimen from Moengo, Surinam and another from Bonaire, Netherlands Antilles. The fourth specimen was recorded from Kartabo, British Guiana by Goodwin and Greenhall (1961) and the fifth from Kaiserberg Airstrip, Surinam by Husson (1962). Goodwin and Greenhall (1964) add one record for Trinidad and one for Venezuela.

In the first 100 years after its discovery the genus *Ametrida* was known by published records of only five specimens, four identified as *A. centurio* and only one (the holotype) as *A. minor*, although at least 14 specimens are now known to have been in various collections by 1947 (see Table I).

On February 26, 1961, the author collected a male *Ametrida* at Nappi Creek in the Kanuku Mountains of British Guiana (ROM 31697) and a second male was taken 20 miles east of Dadanawa in July 1963 by Stanley E. Brock (ROM 32946). These two specimens agreed closely with the published descriptions of *Ametrida minor*.

In the course of identifying these specimens, measurements and other data on the five previously known specimens were tabulated with the surprising discovery that all seven known specimens were males! A similar tabulation for the seven known specimens of *A. centurio* revealed that five were females and two were recorded as males, one being the University of Michigan specimen, No. 53108, reported by Sanborn (1938) and the other the Leiden Museum specimen, No. 13074, as reported by Peters (1866); Jentink (1888) and Husson (1959 and 1962). The author had previously examined the University of Michigan specimen but had noted that no sex had been recorded in the catalogue registry. Dr. W. H. Burt kindly provided the specimen on loan (preserved in alcohol with skull removed) which, under careful examination, proves to be a female, not a male as reported by Sanborn (1938). A letter to Dr. A. M. Husson at Rijksmuseum van Natuurlijke Historie brought the following reply:

Concerning the question of the sex of *Ametrida centurio* (reg. no. Leiden Mus. 13074) I can inform you that this specimen actually is a female, and not a

1 b	Date	000 1111			I a lastion	
		TOCALLY	Sex	Number	Collection	Remarks
	before 1847	"Pará, Brazil" [mapped at Belém]	¢+	1957a	B.M.	Holotype.
						A. centurio Gray. Alc., skull extracted.
2	1832-39?	Paramaribo, Surinam	6	11274	MCZ	Holotype.
						Alc., skull extracted.
	before 1866	Surinam	0+	13074	RMNH	skin and skull
	23 Jul 1871	Obidos, Amazonas, Brazil	O+ C	53108	UMMZ	Alc., skull extracted.
4	1 Nov 1890	Cururnee, B.G. [=Kairuni.	(^K	91-12-1-1	BM	Alc., skull extracted. skin and skull FA 25.5
		Supenaam River?]				
	Nov-Dec 1893	Valencia, Venezuela	(94-9-25-12	BM	skin and skull.
9 9	before 1894		0+	94-9-25-31	BM	Alc. FA 32.2
	ca. 1890	Santarem (in register), Parà (on hottle lahel) Brazil	0+	96-6-2-10	BM	Alc. FA 30.4
	ca. 1896	Manaos [Manaus]. Brazil	ĸ	97-2-28-1	BM	Alc skull extracted
	before 1901	Pará, Brazil	50	1-7-19-8	BM	Alc., skull extracted
	1924	Kartabo, British Guiana	50	142909	AMNH	Alc., skull extracted
	1942	Caripito, Venezuela	50	142612	AMNH	Alc., skull extracted
10 I	1942 A ar 1059	Caripito, Venezuela	0+ ^r	142613	AMNH	Alc., skull extracted
	Apr 1999	Moengo, 55 km E. Faramaribo, Surinam	Q	12012	KMNH	skin and skull
	27 Apr 1958	Belém, Pará, Brazil	50	1118	MPEG	skin and skull
12 C	Oct 1958	Kralendijk, Bonaire, Netherlands	ro	2346	ZMA	Alc., skull extracted
13 2	26 Sent 1960	Antilles Gulf of Paria. Trinidad	0	183840	AMNH	Subadult Alc shull
						extracted, damaged.
14 4	4 Nov 1960	Kaiserberg Airstrip, Zuid River,	63	93204	CNHM	skin and skull
15 2	26 Feb 1961	Surinam Nanni Creek 25 mi F 1 ethem	٢	31670	MOM	elzin and elzull
		1	C	CINTO	MON	
	20 Jul 1961	Gulf of Paria, Trinidad	0+	347379	NSNM	Juv. Alc. FA 32.6
10	1 Jul 1961	Maracas Valley, Trinidad	0+ 0	187225	HNMA	skin and skull (from alc.)
	1 Aug 1901	Gulf of Daria Trinidad	D+ C	00197 179197	UCV AMNU	skin and skull
	11 Oct 1961	Las Cuevas, Trinidad)+ ^r o	187224	AMNH	skin and skun Subadult.
0 11	91 L.1 1069	98 Inn S El Danda Warmels	(1001	11/11	skin and skull (from alc.)
	Jul 1963	oo kui S. Et Dorado, Venezueia Comiwari Wau, 20 mi E.)+ ^r c	32964 32964	ROM	skin and skull skin and skull
•		Dadanawa, B.G.)			
1 2	26 Sep 1963	Belém, Pará, Brazil	0+	337104	NNN	Alc., skull extracted.
20 1	17 May 1964	Monos Is., Grand Pond Bay,	0+	207967	NSNM	skin and skull
1 16		I rinidad	(00000	DOW	
	1001 190 1	St. ignatus near Letnem, Kapunun District, B.G.	>+	33939	KUM	Alc., skull extracted
A.M.N.H. R M	American Museun British Museum	American Museum of Natural History, New York British Museum (Natural History) I ondon	R.O.M.	Royal Ontal	Royal Ontario Museum, Tor	Toronto
CNH M	Chicago Natural F	Chicago Natural History Museum Chicago	N.M.N.	Trinoreided	Initional Control do Voncentalo Concession	Juatification of Nature Stutigart

TABLE I. List of known Specimens of *Ametrida centurio* in order of the date collected. Forearm measurements are listed for specimens for which cranial measurements are not available.

male as indicated by me. As far as possible I examine the bats of the old collection of the Leiden Museum; some of them are erroneously sexed by Temminck, Schlegel or Jentink. The *A. centurio* specimen is in a very poor condition; externally the dried skin does not show distinctly the sex of the specimen. In my opinion it was not justified to soften up the specimen, while moreover this character was not important for my study. Therefore I gave the sex as indicated on the label and in Jentink's Catalogue. But now I soaked the specimen in water and noted after careful examination that the specimen is a female. I congratulate you that you can see on the published measurements that it must be a female rather than a male.

A survey of all specimens of Ametrida known to me (see Table I) indicates that there are now a total of 30 with 28 of known sex (16 females and 12 males) creating the anomalous situation of having all known Ametrida centurio as females and A. minor as males. The only basic distinction between the two has been one of size, although males tend to have a more foreshortened rostrum with a steeper facial profile and a more rounded braincase in lateral profile. Examination of measurements presented in Table II shows that there are indeed distinct differences in size with no overlap in such measurements as the length of forearm and in the cranial measurements: condylobasal length, least interorbital width, breadth of palate (M^1-M^1) and length of tooth row $(C-M^3)$. A summary of measurements (Tables II and III) shows that the lengths of the forearm and of the elements of the third, fourth and fifth digits present most striking differences between the sexes, with no overlap in measurements. As they are among the shortest forearms of all known bats, it would appear to be logical to assume that the female would require a greater wing span in order to carry both the developing embryos and the young in flight. The tendency for the females to have a longer forearm has been observed in other genera such as Lasiurus but, to my knowledge, none shows such striking differences between the sexes as are found in the genus Ametrida. The over-all size differences between males and females are so great and the number of specimens were so few during the first hundred years that the genus was known, it is not surprising that the sexes were thought to represent two distinct species. This error was further supported by the fact that the holotype for A. centurio represented a size near the upper limit for the species and the holotype of A. minor near the lower limit (Table II).

GENUS Ametrida GRAY

Ametrida centurio Gray, 1847

Ametrida minor H. Allen, 1894

Ametrida minor, G. M. Allen, 1902; Cabrera, 1957; Husson, 1959 and 1962; Goodwin and Greenhall, 1961 and 1964.

Holotype. Female adult no. 1957a, British Museum (Natural History) from "Pará, Brazil" collected prior to 1847, preserved in alcohol with skull extracted. In order to avoid confusion between the State of Pará, the river Pará and the precise type locality of *Ametrida centurio*, it appears

TABLE II. Cranial Measurements (in millimetres) of Ametrida centurio

C-M ³ length	44044444444 01-0801-081-1-0	$\begin{array}{c} 4.7\\ 11\\ 5.2\\ 4.5\end{array}$	444 4.000 0000040	4.3 9.4 4.2
M ¹ –M ¹ breadth of palace	00000000000000000000000000000000000000	7.8 13 8.3 7.6		$7.2 \\ 7.4 \\ 7.1 \\ 7.1$
Inter- orbital con- striction	4444444444 50755555555 50755555555555 50755555555555 5075555555555 5075555555555 507555555555 507555555555 507555555555 5075555555555 507555555555555 50755555555555555555555555555555555555	$ \begin{array}{c} 4.2 \\ 4.5 \\ 3.8 \\ 3.8 \end{array} $		
Mastoid width	$egin{array}{c} 9.7 \\ 9.7 \\ 9.8 \\ 9.8 \\ 9.7 \\ 9.2 \\ 9.2 \end{array} $	$9.7 \\ 8 \\ 9.2 \\ 9.2$	× × × × × × × × × × × × × × × × × × ×	8.9 8.8 8.8
Brain case width	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	$8.7 \\ 10 \\ 9.1 \\ 8.0$	$ \frac{\infty}{4} \approx \frac{\infty}{6} = \frac{1}{1} \frac{1}{1} \approx \frac{1}$	8.3 8.5 8.1
Zygomatic width	111.55 4.111.11.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1	11.3 13 11.7 10.8	10.3 10.3 10.8 10.8 10.5 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	10.4 11 10.8 10.1
Condy- lobasal length	$\begin{matrix} 13.3\\13.4\\13.6\\13.6\\13.6\\13.5\\13.6\\13.4\\13.5\\13.2\\13.2\end{matrix}$	$13.5 \\ 9 \\ 13.6 \\ 13.2$	$\begin{array}{c} 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 12.0\\ 11.9\\ 11.9\\ 11.8\\$	12.0 11 12.7 11.8
Greatest length skull	$\begin{array}{c} 16.2\\ 16.2\\ 16.2\\ 16.1\\ 17.1\\ 16.3\\ 16.2\\ 16.2\\ 16.0\\ 16.0\\ 15.6\\ 15.6\end{array}$	$16.2 \\ 10 \\ 17.1 \\ 15.6 $	$\begin{smallmatrix} & 15.0 \\ 15.0 \\ 15.2 \\ 15.2 \\ 15.1 \\ 14.5 \\ 14.$	15.0 11 15.7 14.5
Forearm	$\begin{array}{c} 33.0\\ 33.2\\ 33.2\\ 32.2\\$	$32.1 \\ 13 \\ 33.2 \\ 29.8 $	$\begin{array}{c} 26.5\\ 26.5\\ 25.5\\$	$25.4 \\ 12 \\ 26.5 \\ 24.6 $
Locality	Pará, Brazil St. Ignatius, Lethem, B.G. 38 km S. El Dorado, Venez. Obidos, Amazonas, Brazil Maracas Valley, Trinidad Caripito, Venez. 38 km S. El Dorado, Venez. Monos Is., Trinidad Gulf of Paria, Trinidad Surinam Gulf of Paria, Trinidad Surinam Valencia, Venez.	Average Number Maximum Minimum	Belém, Pará, Brazil 25 mi E. Lethem, B.G. Moengo, Surinam Caripito, Venez. Pará, Brazil Manaos, Brazil 20 mi E. Dadanawa, B.G. Las Cuevas, Trinidad Kaiserberg Airstrip, Surinam Kartabo, B.G. Paramaribo, Surinam Kralendijk, Bonaire	Average Number Maximum Minimum
Collection	BM ROM UCV UMMZ AMNH AMNH AMNH AMNH RMNH RMNH SMNH SMNH	A. centurio	MPEG ROM RMNH AMNH AMNH BM BM ROM ROM AMNH CNHM AMNH MCZ ZMA	. minor
♀♀ Cat. No.	$\substack{ *1957a \\ 33939 \\ 5391 \\ 5391 \\ 53108 \\ 187225 \\ 187225 \\ 187225 \\ 187225 \\ 187225 \\ 1872967 \\ 172127 \\ 172127 \\ 13074 \\ 183849 \\ 1633 \\ 94.9.25.12 \\ \end{array}$	*Holotype A. centurio	$\sigma^{\gamma}\sigma^{\gamma}$ 1118 31697 12512 142612 1.7.19.8 97.2.28.1 187227 93204 142909 †11274 2346	†Holotype A. minor

6

TABLE III. Summary of Weights (in grams) and External Measurements (in mm.) of Ametrida centurio

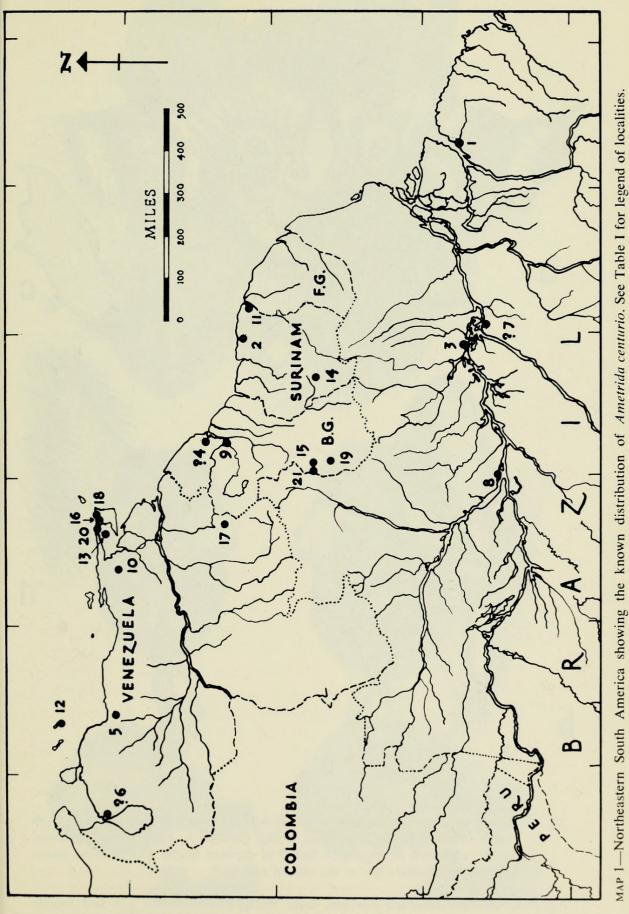
.

		0107				\$ \$		
Measurement	Average	Min.	Max.	No.	Average	Min.	Max.	No.
Weight	7.8	(5.2)*		1(1)*	10.1	(7.2)*	10.2	2(1*)
Head and body length	40	35	46		46.6	40		4
Ear, from notch	13	11	15	5	13.7	11.5	15.0	2
Calcar	4.8	4.3	5.1	x	4.8	3.5	5.5	10
Tibia	14.7	13.0	15.8	×	15.4	14.0	17.6	11
Forearm	25.4	24.6	26.5	13	32.0	29.8	33.2	17
3rd digit, metacarpal	25.3	23.0	26.9	9	31.9	30.5	33.4	4
3rd digit, metacarpal % of forearm	98.8	92.8	101.7	9	99.3	96.0		4
3rd digit, 1st phalanx	8.7	8.0	9.4	5	10.7	10.0		4
3rd digit, 1st phalanx % of forearm	34.5	31.6	37.2	5	33.2	31.3		4
3rd digit, 2nd phalanx	13.6	13.0	14.1	5	17.7	16.0		4
3rd digit, 2nd phalanx % of forearm	53.9	52.0	55.7	5	55.0	51.7	57.5	4
4th digit, metacarpal	22.3	21.3	23.5	4	27.7	26.5		4
4th digit, metacarpal % of forearm	87.5	82.0	91.5	4	86.4	83.5		4
4th digit, 1st phalanx	9.7	9.5	10.0	4	12.3	11.5		4
4th digit, 1st phalanx % of forearm	38.3	36.7	40.7	4	38.4	37.1		4
4th digit, 2nd phalanx	14.1	13.0	15.3	4	17.1	16.4		4
4th digit, 2nd phalanx % of forearm	55.6	50.6	59.0	4	53.3	50.7		4
5th digit, metacarpal	23.3	22.5	24.5	4	28.9	27.5		4
5th digit, metacarpal % of forearm	91.4	87.4	95.5	4	90.06	86.3		4
5th digit, 1st phalanx	9.4	9.3	9.5	4	11.6	10.5		4
5th digit, 1st phalanx % of forearm	36.6	36.2	38.6	4	36.1	32.9		4
5th digit, 2nd phalanx	12.0	10.5	12.5	4	13.9	13.0		4
5th digit, 2nd phalanx % of forearm	47.2	40.6	50.8	4	43.4	41.7		4

*Subadult.

7

desirable to amend the type locality by restricting it to the presently designated town of Belém, capital of the State of Pará, which was formerly known as the town of Pará.


Range. Known from northeastern Brazil along the Amazon River west to Manaus north through the Guianas, Trinidad and Bonaire Island and west to northwest Venezuela (see map).

Dental Formula. I
$$\frac{2-2}{2-2}$$
, C $\frac{1-1}{1-1}$, P $\frac{2-2}{2-2}$, M $\frac{3-3}{3-3} = 32$

Description. Small bats of the subfamily Stenoderminae with a short broad face with swollen eyelids and a well-developed nose leaf with an accessory glandular fold or flap on each side from which three long hairs extend (see Fig. 1); no external tail; pelage greyish, greyish-brown or brown, darkest on the rump and palest on the head and shoulders; a conspicuous white patch of hair on each shoulder at the origin of the antebrachial membrane and usually a second pair on the sides of the neck below the ears (apparently more conspicuous in males); tragus small, acutely pointed with tooth-like projections on the outer margin; females conspicuously larger than the males (see Tables II and III) particularly in the length of the forearm (males 24.6 to 26.5 mm., females 29.8 to 33.2 mm.) and other wing bones and in cranial measurements such as condylobasal length, least interorbital width, breadth of palate and length of tooth row (see Fig. 2).

There is a glandular area on the chest which was described and figured by Dobson (1878) and which apparently has had no further description since. It is well developed on two males (R.O.M. 31697 and 32946) and protrudes laterally as a pair of bifid pendulant flaps (see Fig. 1). In one female (R.O.M. 33939) it is also well developed but less conspicuous. In another female (U.M.M.Z. 53108) the glandular area is obviously present but is hidden in the long fur of the chest and the details of its shape are obscured by an incision in the skin. The lateral flaps of the gland are almost devoid of hair in R.O.M. 31697, but sparsely haired in both the male (R.O.M. 32946) and the female (R.O.M. 33939). The two males are dried skins (the sketch in Fig. 1 was made from the fresh specimen) with the lateral flaps of the chest gland of R.O.M. 31697 drying into a thin flat condition, while R.O.M. 32946 appears much thicker and turgid, as if filled with a waxy material. Further studies with histological examination of this glandular area are required to clarify its structure and function.

Ecology. Unfortunately little is known about this rare species. It appears to be frugivorous and a forest or jungle dwelling species. The specimen taken by the author was collected with a mist net set across a trail extending through the jungle forest at the base of the Kanuku Mountains, an isolated forested mountain surrounded by savannah. It was flying quite late at night (after midnight). Of the 30 specimens known, three (all females) were taken aboard an oil barge in the Gulf of Paria between Trinidad and Venezuela. Husson (1962) reports that two of the males (Moengo, Surinam and Bonaire Island) were caught indoors. The male and female caught by Stanley E. Brock were taken in mist nets as were most of the more recent specimens now in other collections.

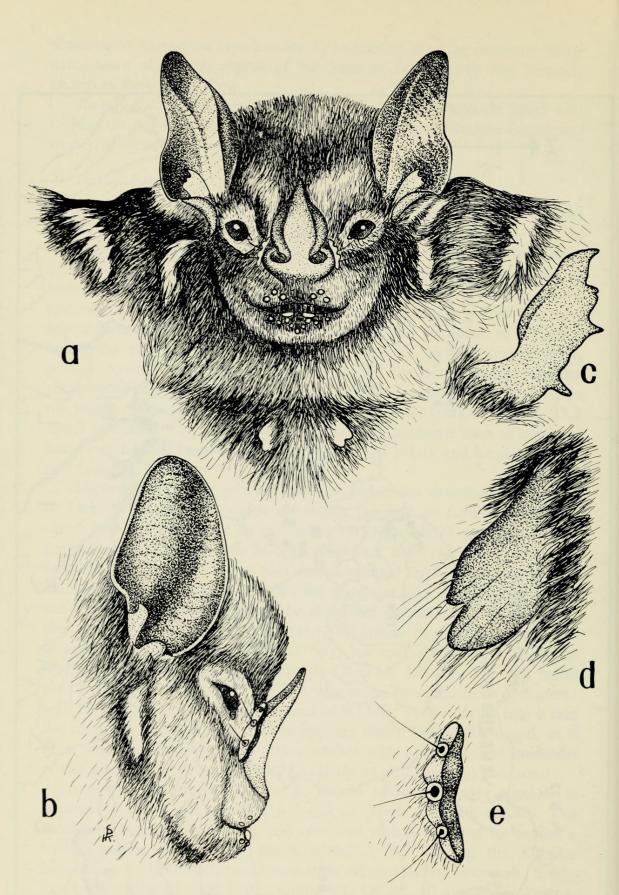
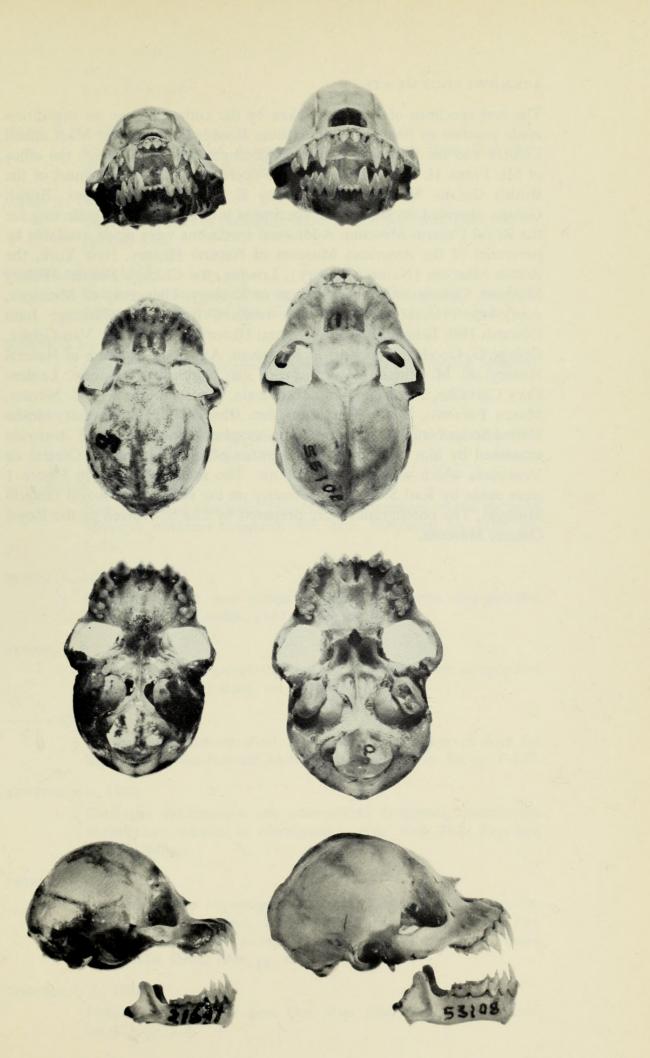



Fig. 1—Details of Ametrida centurio based on field sketches of ROM 31679 3 from Nappi Creek, Kanuku Mountains, British Guiana. A. Front view; B. Lateral profile; C. Detail of tragus; D. Detail of exposed lateral flap of chest gland; E. Detail of ancillary leaf at the base of nose leaf.

Fig. 2—Crania of Ametrida centurio, male ROM 31679 on the left and female U.M.M.Z. 53108 on the right.

ACKNOWLEDGEMENTS

The first specimen of Ametrida taken by the author was on an expedition made possible by financial support from Booker Brothers and MacConnell Limited and the Canadian National Sportsmen's Show (through the office of Mr. Frank H. Kortright) and by co-operation with the personnel of the British Guiana Museum. Mr. Stanley E. Brock of Dadanawa, British Guiana provided two additional specimens in his program of collecting for the Royal Ontario Museum. Additional specimens were made available by personnel of the American Museum of Natural History, New York, the British Museum (Natural History), London, the Chicago Natural History Museum, Chicago, and the Museum of Zoology, University of Michigan, Ann Arbor. Great assistance was received from the following: John Edwards Hill, British Museum (Natural History); Richard G. Van Gelder, George G. Goodwin and Karl F. Koopman, American Museum of Natural History; A. M. Husson, Rijksmuseum van Natuurlijke Historie, Leiden; Cory Carvalho, Departamento de Zoologia, Sao Paulo; and F. C. Novaes, Museu Paraense Emilio Goeldi, Belém. Charles O. Handley, Jr. of the United States National Museum kindly supplied measurements of Ametrida examined by him including the specimens of the Universidad Central de Venezuela which were not seen by me. The sketches shown in Figure 1 were made by Karl S. Pogany, formerly on the staff of the Royal Ontario Museum. The photographs were prepared by Lee S. Warren of the Royal Ontario Museum.

REFERENCES

ALLEN, G. M., 1902

The type locality of *Ametrida minor* H. Allen. Proc. Biol. Soc. Washington, vol. 15, pp. 88–89.

ALLEN, H., 1894

On a new species of *Ametrida*. Proc. Boston Soc. Nat. Hist. vol. 26, pp. 240–246.

CABRERA, ANGEL, 1957

Catalogo de los mamiferos de America del Sur. Revista del Mus. Argentino de Ciencias Nat. Cien. Zool. vol. 4, no. 1, pp. 1–307.

DOBSON, G. E., 1878

Catalogue of the Chiroptera in the collection of the British Museum. London, pp. 1–567.

GOODWIN, GEORGE G. AND ARTHUR M. GREENHALL, 1961

A review of the bats of Trinidad and Tobago. Bull. Am. Mus. Nat. Hist. vol. 122, art. 3, pp. 190–301.

_____ 1964

New records of bats from Trinidad and comments on the status of *Molossus trinitatus* Goodwin. Am. Mus. Novitates, no. 2195, pp. 1–23.

GRAY, J. E., 1847

Characters of six new genera of bats not hitherto distinguished. Proc. Zool. Soc. London, 1847, pt. 15, pp. 14–15.

HUSSON, A. M., 1959

Note on the Neotropical leaf-nosed bat, *Sphaeronycteris toxophyllum* Peters. Arch. Néerl. Zool., vol. 13, suppl. 1, pp. 114–119.

The bats of Suriname. Zool. Verhandelingen Uitgegeven door het Rijksmuseum van Natuurlijke Historie te Leiden, No. 58, pp. 1–282.

JENTINK, F.A., 1888

Catalogue systématique des mammifères (rongeurs, insectivores, cheiroptères, édentés et marsupiaux). Mus. Hist. Nat. Pays-Bas, vol. 12, 280 pp.

PETERS, W., 1866

Über neue oder ungenugend bekannte Flederthiere (Vampyrops, Uroderma, Chiroderma, Ametrida, Tylostoma, Vespertilio, Vesperugo) und Nager (Tylomys, Lasiomys). Monatsber. Kön. Preuss. Akad. Wiss. Berlin 1866, pp. 392–411.

SANBORN, C. C., 1938

Notes on Neotropical bats. Occ. Pap. Mus. Zool. Univ. Mich., no. 373, pp. 1-5.

Peterson, Randolph L. 1965. "A review of the bats of the genus Ametrida, family Phyllostomidae." *A review of the bats of the genus Ametrida, family Phyllostomidae* 65, 1–13.

View This Item Online: <u>https://www.biodiversitylibrary.org/item/111806</u> Permalink: <u>https://www.biodiversitylibrary.org/partpdf/92502</u>

Holding Institution University of Toronto - Royal Ontario Museum Library & Archives

Sponsored by University of Toronto

Copyright & Reuse

Copyright Status: Not provided. Contact Holding Institution to verify copyright status. Rights: <u>Copyright Provisions and Restrictions on Copying: The Royal Ontario Museum works</u> <u>contained herein are protected by copyright (unless otherwise indicated), which is held by</u> <u>the Royal Ontario Museum. These works may be reproduced for non-commercial purposes</u> <u>if credit is given and copyright is acknowledged. These works may not be reproduced, in all</u> <u>or in part, for any commercial purpose except under a license from the Royal Ontario</u> <u>Museum. For permission to reproduce, please email: images@rom.on.ca</u>

This document was created from content at the **Biodiversity Heritage Library**, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.