SPECIES OF CERATOBAEUS ASHMEAD (HYMENOPTERA: SCELIONIDAE) IROM SOUTH-EASTERN AUSTRALIA

by A. D. Austin ${ }^{\text { }}$

Abstract

Summary Austin, A. D. (1984) Species of Ccraiabacus Ashrmead (Hymenoptera: Scelionidae) from South Eastern Australla. Trans. R. Soc, S. Aust. 108(1), 25-34, 12 June. 1984. Five species of Ceratobaeus Ashmead that were previously ill-defined are redescribed to facilitate their accurate identification, Types are designated for Ceratobacus clubionas Austin, C. cuspicornutus Austin and C. masneri Austin. Ceratobaeks intrudae sp,nov., C. platycornutus sp.nov, and C. rieki sp.nov. are deseribed and the mate of C. setosus Dodd is tecorded for the first time. Notes on the diagnosis, biology and distribution of the above species, and some general comments on the genus in Australia, are also provided.

Kuy Words: Ccratobucus, Scelionidac, Araneae, oviposifor, host specificity.

Introduction

Ceratobaeus Ashmead is a large genus containing at least 40 described species. They occur worldwide, but are most diverse in the tropics and subtropics. Available host records ${ }^{1}$ suggest that members of Ceratobaeus are exchusively parasites of spider eggs. They display a high degree of host specificity and cause significant levels of mortality for some spiders (Austin, in press).

The majority of Australian Ceratobaeus were described in the carly part of this century by $\Lambda . \mathrm{P}$. Dodd (1913, 1914a, 1914b, 1915, 1919), mostly from material collected by himself and Λ. A. Girault along the Queensland coast. Subsequently, Girault (1926) described a further species from Queensland, and V. V. Hickman (1967) described three species from Tasmania, which he reared from known spider hosts. Since then Austin (1981) has listed and placed the types of Australian species aecording to modern concepts, and Galloway \& Austin (in press) have provided a diagnosis of the genus, along with a discussion of its biology, distribution and relationships with other genera.

The aim of the present paper is to describe three new species from south-eastern Australia, and to redefine a further five species whose descriptions are presently inadequates Three

[^0]of the latter species (C. clubionus, C. cuspicormutus and C. masneri) were referred to by Austin (1983) in a study of ovipositor mechanics of Ceratobaeus and related genera. Although he states that the names adopted are maniscript names onfy, the information presented in that paper constitutes their valid description under the International Code for Zoological Nomenclature (ICZN Articles 11, 13). However, the description of these species, along with those of C. Lamponae (Hickman) and C setosus Dodd, are inadequate in that they do not separate the species concerned from other specjes of Ceratobacus. The status of these eight species is clarified here so that information from concurrent studies on their ecology (Austin in press; in prep.) can be pubTished free of any taxonomic problems. Notes are provided on their distribution, hosts and relationships with other specjes. Additional diagnostic characters and general comments for the genus are also provided, which supplement those in Galloway \& Austin (in press).

Methods

Specimèr collection and preparation: Live wasps were ohtained hy rearing them from eggs of host spiders collected from the field. This provided valuable supportive information on host relationships and general biology. Other material was collected using yellow pan-traps and sweep-nctting.

Specimens examined under SEM were prepared as follows: fresh material was killed, washed in 70% ethanol (5 min .), transferred to 100% ethanol (2 min .), and placed on a glass alide in a desiceator to dry (24 ht). Dry malerial (museum specimens) was softened in
10% ethanol (30 min .) and treated as above. Specimens were then mounted on holders with electroconductive glue (DAG 915 silver paint) or double-sided athesive tape, coated with 10 num carbon and 30 nm gold-palladium, and viewed under an ETEC Autosean SEM operated at $5-20 \mathrm{keV}$. Some specimens were examined urcoated using the SEM in the Environmental Chamber Mode (Robinson 1980).

Material examined: The types of species described here, with the exception of C. Vicki, were reared from a single host egg sac to ensure that the sexes of each species could be associated accurately (they are likely to be the offspring of one female). Males of some Ceratobaeus species are morphologically very similar and are difficult to separate. Therefore, the material listed in "Non-type specimens examined" has not been included in the jype series in case males of other species have been wrongly associated. However, the chasces of this having happened are stight, as there appears to be only a few species that attack bosts inhabiting the bark of cucalypt trees, the habitat from where most of the present species were collected. In most cases only one paratype fernale and male were conated for SEM: holotypes and allotypes were mounted on card-points so as to tetain their colour.
Terminology: Morphological lerms used throughout this paper are defined in Masner (1980) and Galloway \& Austin (in press).

Abbreviations: ANIC $=$ Australian National Insect Collection. CSIRO, Canberra: BMNH $=$ British Muscum (Natural History), London; CNC - Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa: QDPI - Qucensland Department of Primary Industries, Brisbane: $\mathrm{SAM}=$ South Austrolian Museam, Adelaide; WAITE - Waite Agricultural Research Institute, Adelaide: A.D.A. - specimens coltected by A. D. Austin; Caringbah $=$ a suburb of Sydney: Mylor = study site, 5 km south or Mylor, South Australia; $\mathbf{H}=$ height; $\mathbf{1}$ - length, W $=$ width; $S=$ metasomal sternite; $T-$ metasomal tergite.

Genus CERATOBAEUS Ashmead

Ceratobaeus Ashmead 1893, pp 167, 175: Kieliet 1226, p. 139; Masner 1976, p. 65; Haggert 1979. p. 7; Austin 1981, p. 83; Galloway \& Austin (in press).
T'ype-species, Ceratobneds cormitus Ashmead

Diagnosis: The genus has been adequately diagnosed in Masner (1976) and Galloway \& Austin (in press); however, some additional useftil characters are given below.
Head viewed anteriorly usually triangular or subtriangular in shape, sometimes with genae prolonged so as to be conical in shape towards the mandibles (similar to the condition in Odontacolus Kieffer).
Forewinge Venation clearly delineated though sometimes only lightly colourcd, with at Ieast submarginal, marginal and stignal veins present.
Metasoma. T7 external in female, usually tuiangular in shape, always visible when viewed from above; ovipositor held internally, extending to the apical end of hom on T1 (therefore as long as metasoma).
Camments: Of the genera comprising the tribe ldrini (see Austin 1981). Ceratohacus is most closely related to Idris. Huggert (1979) has proposed that Ceratobaeus should be included under Idris as a subgenus, due to the apparent existence of intermediate forms. However, Austin (1981) maintains that they should be kept separate due to differences in the morphology of the metasoma and posterior mesosoma. Idris differs from Ceratobacus in that T1 is afways flat, the metasoma is never elongated, the propodeum is net excavated, and the propodeal dise is not divided into laminae. Also the length of the ovipositor differs between these twa genera. Ceratobueus species have very long ovipositors that are held internally within the metasoma and extend into the anteriorly projecting horn of T1. Idris species, however, have relatively short internal ovipositors that do not reach past the posterior margin of C2 (Austin 1983).

The length of the metasoma and horn vary substantially between species of Ceratobaens, but remain constant within a species. In sone species the horn is represented by a small hump, while in others it reaches dorsally above the mesosoma. The various stages in horn and metasonal length hetween these fwo extremes results in there being a corresponding series in the length of the ovipositor. Presumably such differences have evolved in response to varying accessibility of bost eggs. Ovipositor lengih is well recognised as a factor involved in determining host specificity and subsequent speciation within the parasitic Itymenoptera (e.g. Askew 1971; Gibbons 1979; Heathcote \&

Davis 1976; Price 1972), and undoubtedly a similar mechanism has operated in Ceratobacus.

The morphology of the posterior mesosoma is elosely tied to the size of the horn: species with large horns have the propodeum and sculellum more excavated than in species with short horns. Although males of Ceratobiens have at most only a slight dorsal expansion on T1, many species still display some excavation of the posterior mesosoma. This excavation is always more pronounced in males of species where the female has a long horn (e.g. C. cuspicornulus, fig. 12).

Figs 1-6. Abtennae. 1. Ceratobacus cuspicornutus, \$. 2, C. cuspicornutus, of. 3, C. masmert, I, 4, C. masneri, of. 5. C. platycormutas o. 6. C. platycornutus, ठ. Figs 7, 8. Forewings. 7. C. cuspicornutes. ㅇ. 8. C. masteri, 7. Scale lines $=$ $100 \mu \mathrm{~m}$. N.B. hairs and cilia not drawn on antennae and wings.

Ceratobaeus chubionus Austin FIGS 9-11, 15, 17, 18
Ceritobaws clabionus Austin 1983. p. 151 (no Lypes designated).

Types (by present designation): holotype ? , ANIC, South Australia: Mylor, 29.iii.1979, A.D.A., ex egg Clubionu sp. (Araneac). Paratypes reáred from same egg sac as holotype-Allotype d, ANIC; Paratypes 20', 29, gold coated on SEM holders, antennae and wings of $1 \sigma^{\circ}, 19$ on slides,
 18, 48: SAM; 1 ㅎ, 4 产 WAITE.

Female

Length 1.3-1.4 mm. Colour. Head and mesosoma shiny black; antennae and legs light brown, almost yellow; antennal clubs and femora slightly darker; metasoma dark brown with lighter margin; posterior T1 and anterior T2 light brown.
Head. L;W:H (6.5:19:14), with granulate sculpturing and fine scattered hairs; dorsally. wider than mesosoma and arehed around pronotum; occipital carina sharp; eyes large and hairy; lateral ocelli touching inner margins of eyes; Frons slightly curved; anteriorly, head ovoid; occiput arched; eyes separated by $0.5 \times$ width of head; frons smooth; frontal carina weakly developed; laterally, gena with sides not quite parallel; antenna (fig. 17), club with 3 faint incomplete sutures.
Mesosoma. Dorsally, with coriaceous sculpturing and sparse short hairs (fig. 9); pronotum not visible; scutum wider than long, L:W (11: 14); notauli absent; scutellum almost semicírcular, L:W (5.5:11), posterior margin with wide flange extending over metanotum, slightly inflected medially; metanotum narrow and crenulated; propodeum vertical and smooth, laminae diverging ventrally, extended into 2 small teeth dorsally (fig. 10).

Forewings not quite reaching to posterior margin of metasoma, not particularly broad. L:W (36:13); venation distinct, marginal and postmarginal veins short; stigmal vein long, basal vein present but lighter than other veins; lightly infuscated around apex of stigmal vein; marginal fringe of hairs moderately long (fig. 15).

Metasoma wider than mesosoma, L:W (30; 17), sparsely covered with hairs, pointed posteriorly; anterior T1 expanded into large hump, not reaching above propodeum (fig. 10); T1 and T2 with coarse longitudinal striations. T3 with lighter striations; lateral margins of T2-T3 and all T4-T6 with granulate sculpturing.

Figs 9-11. Ceratobaeus clubionus. 9. 9 , lateral view of head and mesosoma. 10. 9 , dorsolateral view of mesosoma and T1. 11. δ^{2}, dorsoposterior view of mesosoma and T1. Figs 12, 13. C. cuspicornutus. 12. ${ }^{2}$, dorsal view of mesosoma and T1. 13. 9 , lateral view of mesosoma and T1. Fig. 14. C. intrudae, δ, lateral view of whole body. Wings removed on all specimens. Scale lines $100 \mu \mathrm{~m}$.

Male

Differing from female in the following: length $1.2-1.3 \mathrm{~mm}$; antenia (fig. 18): propodeal laminae diverging slightly more than in female; wings reaching well past posterior margin of metasoma; forewing $\mathrm{L} ; \mathrm{W}(46: 19)$, marginal fringe of hairs long, venation dark, basal vein darker than in female; metasoma rounded posteriorly, wider than mesosoma, L.:W (26:18); anterior T1 inflected dorsally into hump, but not as pronounced as in female (fig 11).

Comments

C. clubionus parasilises the oggs of Clubionta cycladata Simon and an undescribed species of Cluhiona (Clubionidae). These spiders inhabit the bark of eucalypt trees in the Mount Lofty Ranges, South Australia. This species can be distinguished from all other Ceratobaens by its colour, the presence of a postmarginal vein, and the horn on Tl represented by only an anterior dorsal inflection of that tergite, i.e. not roumded dorsally.
Non-type sjecimens cxaminedi: SOUTH AUSIRAL1A: 2ठ, 69, 15.iii.1979, 2б, 139, 18.xi.1979, Mylor, A.D.A., Is*, 7ף̣, Myponga, 4.in. 1979.
 Strathalbyis, A.D.A. ANIC: 40 ${ }^{-1}, 27$, Mylor, 1979, AD.A.; 1^{7}. 18. Myponga, 4.i. 1979 , A.D.A., BMNH; 89, 15.iii.1979, 13, 149, 13.iv. 1979 Myloc, A.D.A., CNC; 10\%, 48. 13, ii, 1979. 5 ? $9 . \mathrm{iii} .1979,18,5 \mathrm{P}, 25 . x i-1979,18,58,7 \times \mathrm{xiL} 1979$, Mylor, A.D.A., QDPI; $10^{\circ}, 5 \%, 13$ iv. $1979,2 \delta^{\circ}, 12$, 20.i.t980, Mylon A.D.A. SAM, 119, 23.1.1579. 26, 8\%. 13.ii.1979, Mylor, A.D.A., WAI'Ik.

Ceratoboens cuspicomitus Austin

 FIGS 1, 2, 7, 12, 13Ceratobaeus cuspicortatus Austio 1983, 1. 151 (not types xlesignated).
Types (by present designation): holotype of ANIC. South Australia: Mylor, 18,ii.1979, A.15.A.. ex egg Clubiona sp. (Arancae). Paratypes reared from same egg sac as holotype-Allotype of ANIC; Paratypes 1 6,29 , gold coated on SFM holders, antennae and wines of δ and 19 on slider. 29 dissected on slides, 28,29, NNIC: 19,
 29. WAITE.

Female

Length $1.50-1.75 \mathrm{~mm}$. Colour. Head and mesosoma black; legs and antenae brown to dark brown; metasomal horn black and shiny; posterior T1 light brown; T2-T7 brown. Head wider than mesosoma, LiW:H (6:19:
15), with granulate sculpturing and short seattered hairs: dorsally, occipital carina sharp; cyes large, with very short hairs; lateral ocelli touching inner margins of eyes; frons slightly curved; anteriorly, head subtriangular in shape; occiput slightly depressed tnedially; eyes separated by slightly more than $0.5 \times$ width of head; lower frons smooth and shiny; frontal carina weakly developed; Jaterally, gena large, margins parallel; antenna (fig. 1), club with 3 faint incomplete sutures.
Mesosoma strongly compressed anterioposteriorly: dorsally, with granulate sculpturing and scattered hairs; pronotum not visible; scutum much wider than long, L:W (9:14); notauli absent; scutellum transverse, $\mathbf{L}: W$ ($1: 10$), with posterior fringe of long hairs: seutellum, metanotum and propodeum strongly excavated to receive horn, sloping away posteriorly towards metasoma; propodeal laminae parallel, not extended dorsally into small teeth (fig; 13); Laterally mesosoma smooth and shiny,
Forewings not reaching past posterior margin of T4, fairly narrow, L:W (44:13); marginal vein short, stigmal vein long, postmarginal vein less than $0.5 \times$ length of stigmal vein; marginal fringe of hairs moderately long (fig. 7).

Metasoma elongated, L: W including horn (55:17), slightly wider than mesosoma, with seattered bairs; horn long. angled forward into mesosomal civity, reaching above level of scutellum: apical horn moderately pointed and smooth, striate laterally and basally (fig. 13) base of T1-T4 with longitudinal striations; lateral margins of T2-T3 and all T4-T7 with granulate seulpturing; 77 slightly elongated.

Male

Differing from female in the following: length $1.35-1.50 \mathrm{~mm}$; antenna (fig. 2): dorsal mesosoma arched more than in female; scutcllum more than $2 \times$ wider than long. I.iW ($5: 12$), posterior margin rounded, infleeted medially into small smooth triangular patch; posterior mesosoma not excavated but flat, sloping posteriorly towards melasoma; metanotum narrow and crenulated, visible from above; propodeum smooth; propodeal laminac diverging ventrally (fig. 12): wings reaching well past posterior metasoma; forewings moderately broad, L:W (55:20), basal vein darker than in female, but still faint compared to submarginat veit, marginal fringe of
hairs long; metasoma moderately clongated, rounded posteriorly, L:W (29:16) : anterior TI inflected dorsally, striations reaching to atterior margin of T1.

Comments

This species parasitises the eggs of Clubiona cycladata and an undescribed species of Clubiona (Clubionidae). These spiders inhabit the bark of eucalypt trees in the Mount Lofty Ranges, South Australia. C. cuspicormulus is related to a group of species that all have a long slightly curved born and an elongate metasoma. It comes closest to C longicornutus Dodd, but differs in having a darkly pigmented basal vein, a brown metasoma (not yellow) and a more elongate antennal pedicel. Non-type specimens cramined: SOUTH AUSTRA1.1A: $3 \delta^{8}, 99$, 9.iii.1979, 109, 13-xi.1979, Mylor, AD.A., ANIC; 26; 69? Mylor, 27.xii.1980. A.D.A., BMNH: 2d, 49. Mylor, 15.iii.1979. A.D.A., CNC: 10. 68 , Mylor, 13.xi.1979, A.D.A. QDPE: 2f, 5f, Mylor, 9.ix.1979, A.D.A., SAM; 29, 29.iii.1979, 3i, 26 iii. 1978, Mylor, A.D.A., WAITE.

Ceratobaeus intrudae sp, nov.

FIGS 14, 16, 19-22
Types: holotype I, ANIC, South Australia: MIt Compass. 4.ai.1979. A.D.A., ex egg lutrude si. (Araneac). Paratynes reared from same cge sac as holotype-Allotype of ANIC; Paratypes 1 है, 12, gold coated on SEM holders, notennae and wings on slides. 28, 29: dissected on slides. ANIC: 18. If, CNC.

Female

length $1.30-1.45 \mathrm{~mm}$. Colour. Head and dorsal mesosoma very dark brown to black: legs, antenmac and lateral mesosoma dark brown: metasoma with a light brown band behind horn and a medial brown patch occupying approximately two-thirds of T3, rest of metasoma dark brown to black.
Head wider than mesosoma, not strongly curved around pronotum, with granulate sculpturing and sparse short hairs, L:W:H (7.5: [8:13); dorsally, oceipital carina sharp: eyes large, covered with short hairs; lateral ocelli touching inner margins of cyes: frons slightly curved; anteriorly, head subtriangular in shape; occiput flat; eyes separated by more than $0.5 \times$ width of head; frons lightly sculptured: frontal carina well developed, reaching half way to median ocellus; laterally, gena large, margins almost parallel; antenna (fig. 19), cluh with 3 faint incomplete sutures.

Fig. 15. Ceratobaeus clnhiontus, f, sorsal surface of whole body. Fig. 16. C. intrudac. 9 , dorsal surface of whole body. Figs 17-20, Anténnae. 17. C. clubionus, \%. 18. C. clabionus, उ. 19, C. intrudae, 8. 20. C. intrudae, ©. Scale lines $=$ $100 \mu \mathrm{~m}$. N.B. hairs and cilia not drawn on antennae and wiogs.

Mesosoma. Dorsally, fairly flat, with granulate sculpturing and scattered hairs; pronotum visible at anterior corners; scutum wider than long, L:W (10:14.5); notauli absent; scutellum almost semi-circular, L:W (4:11), posterior border crenulated, with a narrow llange (fig. 22); metanotum narrow and crenulated; propodeum vertical and smooth; laminae curving dorsally, extended into 2 small tecth (fig. 21); laterally, mesosoma smooth and shiny.
Forewings narrow, not quite reaching to posterior margin of metasoma, L:W (38: 12.5); marginal vein short, stigmal vein long, postmarginal vein as long as stigmal vein, basal vein present but very faint; infuscated around
apex of stigmal vein: marginal fringe of hairs shurt (fig, 16).
Metasoma slightly wider than mesosoma and $2 \times$ longer than wide, L:W (32:16), with scatlered hairs, pointed posieriorly; horn almost vertical, just reaching above level of posterior scutellum, with circular striated sculpturing apically (figs. 21 and 22); TL behind horn and $\mathrm{T}-\mathrm{T} 3$ with longitudinal striations: lateral T2-T3 and all T4-T6 with granulate sculpturing.

Male

Differing from the female in the following: dorsally, head slightly more curved around pronotum, only slightly wider than mesosoma, $\mathrm{L}: \mathrm{W}: 11$ ($7.5: 17: 13$) : antenna (fig. 20): propodeum not quite vertical, sloping away slightly fowards metasoma; propodeal laminae slightly wider than in female; wings reaching well past posterior metasoma; forewing L:W (42:16), marginal fringe of hairs long: metasoma rounded posteriorly, L:W (25:16); anterior T1 strongly inflected dorsally, not reaching above propodeal raminae: without siriate or punctate sculpturing, but with longitudinal striations extending to anterior margin (fig. 14).

Comments

C. intrudae parasitises the eggs of an unknown species of Intruda (Gnaphosidac), the latter being found under the bark of eucalypt trees it the Mount Lofty Ranges, South Australtia. This species is related to a latge group, all with moderately short horns. However, C intrudae can be distinguished from all other species by the following combination of characters: apical hom with circular striac, metasioma twice as long as wide, colour as in deseription.

Nin-1ype specimems examincel SOLTH AUSTRA IIA: 1ङ. 3\%, Brifgewater, 26.iii.1979. A.D.A. ANIC: 1d, 4\%. Bridgewater. 26.iii.1978, A.D.A., SAM

C'rotohders Semponac (Hickman)

 FlGS 23-25Odontacoles lamponac Hickman 1967, p. 18.
C'eratobacus lamponat (Hickman); Masner 1976, 5. 66; Austin 1981, p. 84.

Typess holotype $\&$ on slide, ANIC: Tasmania, Domain, Hobart, 29.xii,1966, V. V. Hickman, ex egg Lampona cylindrata (L. Koch) (Arancae). Paratypes 26,19 , on same slide as holatype

Female

Length 1.60-1,85. Colour Head, mesosoma and horn shitty black; antennae and metasoma dark brown to black; legs brown.
Head. L:W:H (9:22.5:16), with moderately coarse punctate-rcticulate sculpturing, covered with loing hairs; dorsally, wider than mesosoma, arched around pronotum: occiput well exposed; occipital earima sharp, moderately angled at comers: cyes large. with long hairs: lateral ocelli touching inner margins of eyes; frons straight; anteriorly, head subtriangular in shape; oceiput straight: cyes separated by slightly less than $0.5 \times$ width of head; frons flat, with borizontal striae; frontal earina very small; laterally, gena with margins parallel. rounded ventrally: antennal scape $\mathrm{L}: \mathrm{W}$ (31:6), pediect (13:5.5), elub (27:12) with 3 faint incomplete sutures.
Mesosoma dorsally, with moderately coarse punctate-reficulate seulptaring, sparsely coyered with long hairs (fig. 24); pronotum visible at anterior lateral corners; scatum wider than Jong; L;W ([3.5:17.5); notauli absent; scutellum almost $3 \times$ wider than long, L:W (4;12). posterior margin straight, fringe of long hairs projecting over horn often present; metanotum and propodeum llat; metanotum narrow and crenulated; propodeal laminac diverging ventrally, extended dorsally itio blunt teeth; lateral propodeum and mesopleurat margined by single rows of deep pits (fig. 23).
Forewings not quite reaching to posterior margin of mefasema, moderately broad, L:W (73:27), infuscated medially; venation elear and dark; marginal vein short, posimarginal vein as long as stigmal vein, basal vein light; marginal fringe of hairs moderately long.
Mctasoma wider than mesosoma, L:W including horn ($42: 22$), covered with long hairs; horn just reaching to level of dorsal seutellum. apical two-thirds with coriaccous sculpturing almost sealy in appearance (fig. 23); Tl including basal one-third of horn and T2 with longitudinal striations, T3 strigose with background granulate sculpturiog, T4-T6 with granulate sculpturing

Male

Differing from female in the following: fength $1.55-1.70 \mathrm{~mm}$; dorsally, scutellum more rounded, though slightly flattened posteriorly, $2 \times$ wider than long, L:W (6.5:

12.5); propodeum flat, almost vertical; propodeal laminae wide, with coarse striate sculptoring, strongly diverging ventrally, extended into 2 blunt leeth dorsally which almost toueh medially (6 g .25); wings reaching well past posterior metasoma; forewing L:W (83: 32), well infuscated, marginal fringe of hairs long: metasoma subpedunculate, wider than mesosoma, with scattered long hairs, L:W ($35: 25$), anterior T 1 inflected dorsally: T1-T2 and anterior T3 with Iongitedinal striations, lateral 'T2 and rest of metasoma with granulate sculpturing.

Comments

C. lamponae (Hickman) parasitises the eggs of tampona cylindrata (L.. Koch) (Gnaphosidae); the fatter being widespread throughout Australia. C. Jamponae, previously only known from Tasmania, is recorded from mainland Australia (Mount Lofty Ragges. South Australia) for the first time. There appears to be some minor geographic variation in this species. Some specimens from Tasmania have the posterior fringe of hairs on the scutellum very short or absent, white mainland specimens have a very long Fringe. C. lamponae can be distinguished from other species by its colour, presence of a postmarginal yein and sbaracteristic sculpturing on the horn and dorsal mesosoma.
Non-type specimens examined; SOUIH AUSTRA. LIA: 1C, 19; gold coated on SEM holders antennae and wings on slides, $26^{\circ}, 11 \%$, Mylor29.iii,1979, A.D.A., ANIC: 63', 109, Mylor, 20.i.80, Mylor, A.D.A., BMNH; 43'. 8\%, Mylor. 20.i.1980, A.D.A., CNC; 1К, 11?, Mylor, 29.iii. 1979. A.D.A., QDPI; 4ठ', 6\%, Mylor, 20.i.1980. A,D.A., SAM; 1न̃, 69, Mylor 14.xili1979, A.D.A. WAITE. TASMANIA: 10 , IIC, Domain, Hobart, 9.iii.1967, V. V. Hickman, ANIC: 38, II?. Domain. Hoburt. 29.xii.1967. V. V, Hickman. CNC.

Ceratobetens masnert Austin

FIGS 3, 4, 8, 26, 27
Ceratobacus masteri dustin 1983, p. 143 froc types designated).
Types (by present designation) : hololype \& ANIC: South Australia; Mylor, 18,ii.1979, A.D.A., ex egg Clubiona sp. (Araneae). Paratypes reated
from same ege sac is hololype-Allotype of, ANIC: Paratypes $25^{\circ}, 38$ gold coated on SEM hodjers, intennate and wings of 10 , 19 ou slides, 48, 4i, ANIC: 16, 48. CNC: 16. 1\%. UDPI: 16", 48, SAM: 16, 49, WAITE.

Femate

Length 1.25-1,40 mm. Colour. Head and mesosona black; antennac and legs brown; metasoma dark brown; Tl light brown, but with apex of horn brown to dark brown.
Head wider than mesosoma. L:W:H (7: 18;13), arched around pronotum, with granulate sculpturing and seattered short hairs; dorsally, occipital catina sharp; eyes large and hairy; lateral ocelli touching inner margins of eyes; frons eurved; anteriorly, head subtriangular in shape; occiput curved; eyes separated by slightly more than $0.5 \times$ width of head; frons smooth; frontal carina weakly developed, reaching (0,5 \times distance to median ocellus; laterally, gena wide, sides not parallel; antenna (fig, 3).
Mesosoma. Dorsally, with granulate seulpturing and scuftered hairs; pronotum not visible: scutum wider than long, L;W (9:12); notauli absent; scutellum LiW (4.5:10), rounded posteriorly, with erenulated border. slightly inflected medially: metanotum narrow and crenulated; propodeum vertical and smooth; laminae diverging ventrally and curved dorsally into 2 small feeth, laterally wilh coarse striations (fig. 26).
Forewings just reaching to posterior margin of metasoma, fairly narrow, L.W (40:13); margital vein short, stigmal vein long, postmarginal vein approximately $0,75 \times$ length of stigmal vein, basal vein present but faint: marginal fringe of hairs short (fig. 8),
Metasoma wider than mesosoma, pearly 2 χ longer than wide, L.W (35:19), pointed posteriorly, spatsely covered with hairs; TI expanted into a small dorsal horn, nol reaching to level of scutellum (fig. 26); apex of horn with faint punciate sculpturing; mest of hont, posterior TI and T2-T'3 with longitudinal striations; lateral margins of ${ }^{\text {T2 }}$, background of T3 and all T4-T6 with granulaic sculpturing.

Figs 21, 22. Ceratobuens intradac, ㅇ․ 21. Iateral view of mesosoma and T1. 22. Borsuit view of mesosoma and T1. Figs 23-25. C. Jamponac. 23. ?, lateral view of mesosoma and TI. 24, \&, dorsal view of mesosoma. 25 of, lateral view of mesosoma and T]. Figs. 26, 27. C mashen, 26. I. dorsolateral view of mesosoma and TI 27. J. dorsolateral view of mesosoma and II Fic. 28. C. platycorvutus. + dorsoposicrior viow of mesisonta and TI Wings removed on all specimens. Scale lines - 100 mm .

Malc

Differing from female in the rollowing: length $1.20-1.35 \mathrm{~mm}$; antenna (6g. 4); hairs on dorsal surface of mesosoma slightly longer than in female; scutellum slightly arched dorsally; lateral propodeum with fine sparse striations; wings reaching well past posterior margin of metasoma; forewing L:W (49:18). venation same as female, but with hasal vein more obvious, almost as dork as submarginal yein, marginal fringe of hairs long: metasoma rounded posteriorly, L:W (27;16,5): anterior TI inflected dorsally, only reaching to $0.5 \times$ height of propodewn, striations reaching to anterior margin of Tl (fig, 27).

Comments

C. masneri parasitises the eggs of Clubione robusta L. Koch, Cl. cycladata, an undescribed species of Clubiona (Clubionidae) and Hemicloea sp. (Gnaphosidae): all inhabit the bark of cucalypt trees throughout south-eustern Australia، So far C. masteri has been eollected from locations in South Australia, Victoria and the Australian Capital Tefritury. This species belongs to a large group that all have short horns. However, C. masueri can be recognised from atl other species by the presence of a postmarginal vein. a darkly pigmented basal veits, and its colour (see description).
Non-type specimens examind: AUSTRALIAN CAPITAL TERRITORY: 6? Canberra. I4.i. 1980, AD.A. ANIC. SOUTH AUSTRALIA: 13 . 20.i.1979, ex eges Clationg sp. (Arancac), fis. 148, 13, xi, 1979. ex eges Henticloca sp. (Araneate). Mylor. AD.A., ANIC: 106.178 , Mylor, $1975-$ 80, A.D.A.. 19, Myponga, 4iii.1979, A.D.A.: 工d 338. Mylor. 10.iif.1980. A.D.A. ex eges Hemicloca sp, , CNC; 40 , 62, 1, iit 1979, 28, 68. 20.i, 1980. Mylor, A.D.A. QDPI; 56 6\% Mylor. 17.ii.1980, A.D.A., SAN; 78, 15.iv.1979, 118 i 12.viii. 1979, Mylor, A.D.A.. WAITE YIC TORIA: 16. 99, Woorndoo, 26 ix. 1979 , A.D.A. SAM.

Ceratobaeus platycornutus sp, nov.

 FIGS 5, 6, 28. 29Tyegs: holotype of ANIC. Australian Capital Teribory: University campus, Canherra, 14.i-1981), A.D.A.. ex ege Cluhiona sp, (Arancae). Paratypen
yeared from same egg sac as hofotype-Allotype ©, ANIC; Paratypes 26, 29 , gold coated on SEM hodders, antennae and wings of $16,1 \%$ on stides, 23) 78, ANIC: 10'. 4द. CNC; 18,49, QDPI: 13. 40 , WAITE.

Femtale

Length $1.75-1.85 \mathrm{~mm}$. Colour, Head, mesisoma and apical hom black; antennac, legs and metasoma dark brown: anterior metasoma behind hom. with a light brown band.
Head wider than mesosoma, L;W;H (7: 20:15), arched around pronotum, with granulate seulpturing, sparsely covered with hairs; dorsally, occipital carina sharp; eyes large, with fine hairs; laterat ocelfi touching inner margins of eyes: frons curved: anteriorly, head subtriangular in shape; occiput straight: eyes separated by $0.5 \times$ width of head; frons lightly punctate; froutal earina very small: laterally. gena wide. sides almost parallel; antenna (fig. $5)$.
Mesosoma strongly compressed anterioposteriorly; dorsally, with granulate seulpturing and scattered hairs; pronotum not visible: scutum wider than long, L: W (10:15); motauli absent; scutellom transverse, 1: W (1:10). scutellum, metanotum and propodeum all strongly indented posteriorly, sloping lowards metasoma; propodeal laminae vertical, curved nutwards ventrally, without dorsal teeth (lig. 28).

Forewings reaching to posteriop margin of T4, fairly narrow, L:W (71:23) ; lightly infuscated medially; marginal vein short, stigmal vein loog, postmarginal vein less than $0.5 \times$ Iength of stigmal vein, basal vein light; marginal fringe of hairs moderafely long.
Metasoma elongated, L.W including horn ($56: 18$), wister than mesosoma: horn long, slighly arched, projecting anteciorly, closely fitting to mesosoma, reaching above level of sentellum. flattened and disc-shaped apically (fig, 28) ; T'1 exeept for apical portion of horn and T2-T4 with fongitudinal striations; lateral T2-T4 and all T5-T7 with light granulate sculpturing.

Male

Differing from female in the following: length $1.4-1.5 \mathrm{~mm}$; antennae and legs yellow;

Fig. 29. Ceratobacios plaficormutus- ©) dorsolateral view of mesosoma and T1. Pig. 30, C. rieki, ?. dorsolateral view of head. mesosoma and T1. Fies 31-34. Cerarobaus selosus 31. 星 anterior vjew of head, attenme missing. 32. P, dorsolateral view of mososoma. 33. Q, lateral view of mesosomat and TI. 34. 6, lateral siew of nesosomis and 11. Wings renoved oll all apeeinens except on one side of specimens in Eigs. 32 and 33 , Scate liges $100 \mu \mathrm{~m}$.

metasoma dark brown to black, with light brown band anteriorly; antenna (fig. 6); head not as high, L:W:H (7:20:13.5); scutellum almost semicircular, slightly indented posteriorly to form smooth triangular patch; metanotum and propodeum flattened and smooth; propodeal laminae diverging ventrally; wings reaching well past metasoma; forewings broad, L:W (80:31), postmarginal vein not as long as in female, basal vein slightly darker, marginal fringe of hairs long; metasoma not as clongated, L:W (30:20); anterior TI inflected dorsally (fig. 29); T1-T3 with longitudinal striations; rest of metasoma with light punctate sculpturing.

Comments

The specific name platycormutus (platys in Latin, broad or flat; cornutus, horn) refers to the flattened, disc-shaped apical end of the metasomal horn. This species has been recorded as parasitising the eggs of an undescribed species of Clubiona (Clabionidae) inhabiting bark of eucalypt trees in the Australian Capital Territory. C. platycornutus is very similar to cuspicornitus and longicornutus, but differs in the shape of the metasoma horn (sec comments under cuspicorпu(tus).
Non-rype spicimens examined: AUSTRALIAN CAPITAL TERRTIORY: $40^{\circ}, 119$, University campus, Canberra, 10.i.1980, A.D.A., ANIC.

Ceratobacus rieki sp. nov.

F1GS 30, 35, 39
Types: holotype 9. ANIC. New Soulh Wales: 10 ml E. Trangie. 20.x.1949, E. F. Rick. Pakttypes 19) gold coated on SEM holder (mesosoma missing), wing on slide, 19 dissected on slide. 137. ANIC; same dita as holotype.

ticmale

Length 2.1-2.3 mm, Colour. Head and mesosoma black; antemnae dark brown; legs brown; metasoma dark brown to black.
Head. L:W:H (7:20:14.5), with granulate sculpturing covered with short hairs; dorsally, slightly wider than mesosoma; occiput excavated and arched around pronotum; occipital carina sharp, not angled at corners; eyes large and hairless; lateral ocelli touching inner margins of eyes; frons slightly arched; anteriorly, head subtriangular; occiput slightly depressed medially; eyes separated by slightly more than $0.5 \times$ width of head; frons smooth; fronial carina not developed; laterally, gena with margins parallel; antenna (fig. 39), club large with 3 faint incomplete sutures.

Mesosoma slrongly compressed anterioposteriorly, posterior surface sloping towards metasoma; dorsally, with punctate-granulate sculpluring, coyered with short hairs; pronotum not visible; scutum $2 \times$ wider than Jong, L:W

Fig. 35. Ceratobucas rieki, 9, dorsal surface of whole hody. Fig. 36. C. setostes, P, dorsal surface of whole body. Figs 37-39. Antennac. 37. C. setosus. of 38. C. setosus, o. 39. C. Ficki, ip. Scale lines $=100-/ \mathrm{mm}, \mathrm{N}, \mathrm{B}$. hairs and cilla not drawn on antennae and wings.
(8:16); notauli absent; scutellum transverse, L:W (1:10) with posterior fringe of long hairs; scutellum, metanotum and propodeum strongly excavated posteriorly for reception of horn; propodeal laminae vertical, without teeth dorsally (figs. 30 and 35).
Forewings fairly narrow, L:W (47:16), not reaching past T4, not infuscated; venation distinct, marginal and postmarginal veins
short, stigmal vein long, basal vein present but faint; marginal fringe of hairs moderately long (fig. 35)
Metasoma extremely elongated, approximately $4 \times$ longer than bead and mesosoma combined, $6 \times$ longer than wide, L:W $(90: 15)$, covered with short hairs; horn long, strongly arched anteriorly, cylindrical but slightly flattened apically (fig. 30); T1-T3 including hasal half of horn with longitudinal striations; lateral margins of $\mathrm{T} 2-\mathrm{T} 3$, and all T4-T7 with granulate sculpturing.
Male unknown.
Hosi unknown.
Non-type specimens examined: QUEENSI AND: Brisbane, Indooroopilty, 14.xii,76, Bolucek. BMNH.

Comments

This species is named after its collecter. Dr E. F. Rick. C. rieki is the largest species of Ceratobacus so far recorded in the world; its elongate finctasoma being unlike that of any other species.

Cratabiens setosus Dodd
 FIGS 31-34, 36-38

Ceranobaens setosus Dodd 1914a, p. 65; Kieflet 1926, p. 142; Auslin 1981, p. 85 ,
types- holotype pre head and wings on slide. No, 1966, SAM: Quechsimind, Gordonvite (Nelson). $29 . x .1913$ A. P. Dodd.

Female

Length 1.3-1.5 mm. Colour. Head and mesosoma black: antennae and legs brown to dark brown; dorsal metasoma dark brown to black. ventral surface dark brown.
Head, L:W:H (8.5:19:15), with granulate seulphoring. covered with dense mat of short hairs; dorsally squarish, slightly wider than mesosoma, not strongly excavated posteriorly; occipital carina sharp, not angled at eorners; eyes large, covered with hairs; lateral ocelli touching inner margins of cyes; frons almost straight; anteriorly, head subtriangular it shape; occiput arehed; eyes separated hy more than $0,5 \times$ width of head; frons smooth and shiny; frontal earina very short; laterally, gena with margins converging, rounded ventrally (fig. 31); antenna (fig. 38), club with 3 Pfint incomplete sutures.
Mesosoma. Dorsally slightly arched, with gramolate sculpturing, covered with dense mat of short hairs (fig. 32) : pronotum not visible at anterior laferal corners: scutum not much

Wher than long, $\mathrm{L}: \mathrm{W}$ (11:14.5); notauli absent; scutellum semicircular. L!W (5:11), with erenulated posterior border (fig, 36); metanotum narrow and crenulated; posterior surface of propodeum vertical; laminac diverging slightly, exfended into 2 small sharply pointed teeth dorsally (fig, 33); laterally. mesosoma smooth and shiny.
Forewings just reaching posterior margio of metasoma, L:W (38:15.5); matginal and pustmarginal veins short, stigmal vein long, basal veif dark; marginal fringe of hairs short (fig. 36).
Melasoma broad and flat, wider than mesosoma, pointed posteriorly, L:W (30:19) (fig. 36), covered with dense mat of short hairs; horn vertical. just reaching to level of seatellum, with reficulate-rugose sempturing apically (fig. 33) ; base of T1-T3 with longitudinal striations; lateral margins of T2-T3 and all T4-T6 with granulate sculpturing.

Male

Differing from female in the following: fength 1.2-1.3 mm; antennae and legs light brown; metasoma dark brown; antenna (fig. 37); posterior mesosoma almost indentical, except propodeal laminac diverging slightly more than in female; forewings long, reaching well past posterior metasoma, L:W (42:16): metasoma broad, slightly wider than mesosoma, rounded posteriorly, L:W (24:18); anterior Ti expanded dersally info hump, not reaching above propodeum, longitudival striations reaching to anterior margin (fig, 34); T2-T6 with long scallered hairs.

Comments

C. setosus has been recorded along the const of Queensland and New South Wales. In New South Wales this species has been reared from the eggs of Jxenticus robuslus (L. Koch) and 1 . martius (Simon) (Ammarobidae), collected from around buildings and under bark of eucalypt trees. Another seclionid, Idris ixeutich (Hickman), has also been recorded as parasitising the egegs of these two spiders in Tasmania, Victoria, infand New South Wales and South Australia (Hickman 1967; Austin unpub1), C. setoxus can be easily recognised from all other species by its dense pilosity and scufpturing on the metasoma horn. Non-lype specimens cxamined: NFW SOUTH WA1FS: 10, 39, gold coated un SEM holders. wings and antennice of 16.19 on shides, 18 dissected on stite, $46.218 . \operatorname{ANRC} 3 \wedge 17 \%$. CNK.

Pearl Beach, Jan. 1976, A.D.A., ex eggs Ixeutichs robusius (L. Koch) (Araneae); 10, 59, SAM; 10, 58, WATTE, Caringbah, 12 iiii. 1976, A.D.A.: 39, Pearl Beach, Jan. 1978, A.D.A., BMNH: 2 \%. 4? Caringbah, 22.iii.1976, A.D.A., QDPI, QUEENSLAND: 19, Brisbane, Sept. 1928, A. D. Dodd; 19, Gogango, Dec. 1928, A. P, Dodd; 18. Gordonvale, Nov, 1920 (no collector), ANIC; 26. 2\%, Maleny, 14.vi.1973, M. D. (D.A.I) : Iq. 600-700 m Sunday Creek nr Limna, $28-29 . \mathrm{ix}$. 1974, I. Naumann, QDPI.

Acknowledgements

I thank Dr G. Gross, South Australian Museum, Dr I. D. Naumant and Ms J. C

Cardale, CSIRO, and Mr E. C. Dahms and Dr G. B. Monteith, Queensland Museum, For their hospitality while visiting the above institutions and for loan of type specimens, I am grateful to Dr L. Masner and Dr 1. D. Galloway for their helpful suggestions, and to Dr K, Bartusek for assistance with SEM techniques. Early drafts of the manuscript were read and substantially improved by Prof. T. O. Browning, Dr P. W. Miles and Sally Austin. Financial support for this study was provided by a URG Scholarship from the University of Adelaide.

References

Ashmead, W. H. (1893) A monograph of the North American Proctotrypidae. Bull, U.S. natr. Mus. 45, 1-472.
Askew, R. R. (1971) "Parasitic Insects". (Heinemann Educational Books, London).
Austin, A. D. (1981) The types of Australian species in the Tribes Idrini, Baeini and Embidobilif (Hymenoptera; Scelionidae: Scelioninae). Gen. Appl. Ent. 13, 81-92.
(1983) Morphology and mechanics of the ovipositor system of Ceratobacus Ashmead (Hymenoptera: Scelionidae) and related genera.
Int. I. Insect Morphol. Embryol. 12, 139-155.
(in press) The fecundity, development and host relationships of Ceratobuens (Hymenoptera: Scelionidae). Ecol. Ent.
Dodd, A. P. (1913) Further additions to the Australian Proctotrypoidea. Arch. f. Nulurs 79 Aht. A, Heft, 8, 77-91.

- (1914a) Australian Hymenoptera Proctotrypoidea No. 2. Trans. R. Soc. S. Aust. 38, 58 131.
(1914b) Further new genera and species of Australian Proctotrypoidea. Proc. R, Soc, Qd 26. 91-140.
- (1915) Australian Hymenopteria Proctotrypoidea No 3. Trans. R. Soc. S. Aust. 39, 384454.
(1919) Notes on exotic Proctotrypoidea in ihe Brilish and Oxford University Museums, with descriptions of new genera and species. Trans. R. ent. Soc. Soc. Lond. 67, 321-82.
Galeoway, I. D. \& Austin, A. D. (in press) A revision of the Scelioninae (Hymenoptera: Scelionidaé) of Australia. Aust. J. Zool. Suppl. Sor. No, 99.

Gimbons. J R. H. (1979) A model for sympatric: speciation in Megarhyssu (Hymenoptera: Tchneumonidae): competitive speciation. Am Nat 114, 719-41.
Girnult, A. A. (1926) New pests from Australia. V. Private Publication. Brisbane, 20 December 1926. 2 pp .

Heatwole, H. \& Davis, D. M. (1965) Ecology of three species of parasitic insects of the genus Megarhyssa (Hymenoptera: Ichneumonidae). Ecology 46, 140-50.
Hickman. V. V. (1967) New Scelionidae (Hymenoptera) which lay their eggs in those of spiders. J. ent. Soc. Aust. (N.S.W.) 4. 15-39.
Huggert, L. (1979) Revision of the Palaearetic species of the genus Idris Förster s.I. (Hymenoptera, Proctotrapoidea: Scelionidae). Ent. Scand. Suppl. 12, 1-60.
International. Commission On Zoologleal Nomenclature (1964) International Code for Zoalngical Nomenclature, London. xx, 176 pp ,
Kieffer, J. J, (1926) Hymenoptera, Proctotrypoidea. Scelionidate. Das Ticrreich 48, 1-885,
Masner, L. (1976) Revisionary notes and keys to world genera of Scelionidae (Hymenoptera; Proctotrupoidea). Mem. ent. Soe. Can. 97. 1-87,
(1980) Keys to genera of Scelionidac of the Holarctic region, with descriptions of new genera and species (Hymenoptera: Proctotrnpoidea). Ihid. 113, 1-54.
Price, P. W. (1972) Parasitoids nfilizing the same host: adaptive nature of differences in size and form. Ecology 53, 190-95.
Robinson, B. W, (1980) The backscattered-electron low-vacuum S.E.M. technique: a user's eyiduation. Micron 11, 333-4.

Biodiversity Heritage Library

Austin, A. D. 1984. "Species of Ceratobaeus Ashmead (Hymenoptera:
Scelionidae) from south-eastern Australia." Transactions of the Royal Society of South Australia, Incorporated 108, 21-34.

View This Item Online: https://www.biodiversitylibrary.org/item/128035
Permalink: https://www.biodiversitylibrary.org/partpdf/82193

Holding Institution

South Australian Museum

Sponsored by

Atlas of Living Australia

Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder. License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: * Department of Entomology, Waite Agricultural Research Institute, Gilen Osmond, S. Aust. 5064. Present address: Commonweallh Institule of En1omology, British Moseum (Natural History). Cromwell Road. London SW7 SBD, England.
 ${ }^{1}$ Austin. A. D. (1982). The biology and ecology of Clubiona species (Arancac: Clubionidae) and their scelionid parasitoids (Hymenoptera), Pli.D. thesis, University of Adelaide. Unpubl.

