TAXONOMY AND BIOLOGY OF A NEW SPECIES OF ZAPHANERA (HEMIPTERA: ALEYRODIDAE) AND ITS ASSOCIATION WITH THE WIDESPREAD DEATH OF WESTERN MYALL TREES, ACACIA PAPYROCARPA, NEAR ROXBY DOWNS, SOUTH AUSTRALIA

by P. T. Bailey", J. H. Martin", J. S. Noyes \& A. D. Austin ${ }^{\text { }}$

Summary

Abstract

Balify, P. T., Martin, J. H., Noyes, J. S. \& Austin, A. D. (2001) Taxonomy and biology of a new species of Zaphanera (Hemiptera: Aleyrodidae) and its association with the widespread death of western myall trees, Acacia papyrocarpa, near Roxby Downs, South Australia. Trans. R. Soc. S. Aust, 125(2) 83-96, 30 November, 2001.

An outbreak of western myall whitefly, a new species of Zaphanera (Hemiptera: Aleyrodidae), is associated with dieback and death of western myall trees, Acacia papyrocarpa Bentham, in a desert area of about 10,000 km^{2} in South Australia. Both young and mature trees up to several hundred years old are affected. Death of foliage appears to be related to large numbers of the whitefly feeding on phyllodes. A new species of the parasitoid Zar'hopaloides (Hymenoptera: Encyrtidac) emerged from whitefly pupae and appears to be the first encyrtid authenticated as a true parasitoid of aleyrodids. Possible causes of this outbreak are discussed and include (1) a temporary parasitoid asynchrony with its host population, (2) the possibility that western myall whitefly has been newly-introduced to the area on another plant host and has adapted to western myall trees and (3) that the outbreak is symptomatic of a widespread decline in the health of trees. All life-history stages of the new species of Zaphanera and the new species of the parasitoid Zarhopaloides are described.

Key Words: Zaphanera, Zarhopaloides, Acacia papyrocarpa Bentham, western myall whitefly, western myall tree, outbreak, tree death.

Introduction

Western myall, Acacia papyrocarpa Bentham, is a desert adapted tree of chenopod shrublands on calcareous soils in the $150-300 \mathrm{~mm}$ (predominantly winter) rainfall zones of northern Spencer Gulf, along the margins of the Nullarbor Plain of South Australia, and in the Eastern Goldfields of Western Australia. Much of this area is used for grazing sheep and cattle for which the trees provide shelter. Western myall shares the eastern parts of its range with mulga, Acacia ancura F. Muell., to form a mixed species woodland.

Western myall trees are slow-growing and may reach $5-6 \mathrm{~m}$ before becoming recumbent (Lange \& Sparrow 1992). Age estimates of mature trees vary

[^0]from 250 years (Coleman et al. $1996^{\text {t }}$) to $350+$ years (Ireland 1997^{2}). Foliar growth flushes are produced by the tree during summer (November to February) and appear to be independent of rainfall (Ireland 1997²)
This paper describes an outbreak of an apparently native whitefly species in the genus Zaphanera on western myall which has killed trees over a wide area of north-eastern South Australia. There is no historical evidence of previous outbreaks of this species on western myall trees anywhere in Australia (nor of any other insect capable of killing so many trees so quickly). We are not aware of previous reports of any whitefly species causing widespread death of perennial trees. Both the whitefly and its encyrtid wasp parasitoid are described as new and possible reasons for the outbreak are discussed.

Materials and Methods

Taxonomy

Terminology for whitefly morphology follows that of Martin (1999) and that for the encyrtid parasitoid is after Noyes \& Hayat (1994). The following abbreviations are used for institutions:
ANIC, Australian National Insect Collection, CSIRO Entomology, Canberra;
BMNH, The Natural History Museum, London, UK: USNM, US National Museum of Natural History, Washington, DC;
WINC, Waite Insect and Nematode Collection, Waite Campus, SA.
the followneng abbreviations are used in the parasitoid descripion:
AL - aedeagus length
$\mathrm{F}_{\mathrm{L}}^{\mathrm{L}}$, - masimum eye longth
IW - masimum cye uvidth
F1-6 - lunicle segments 1-fr, b.e. Whe lirst six
scgments dher the pedies
FV - inimimunt finntovertex ividth
I WI. - Finte wing length
FWW - fore wing width
(il - gonostylus length
HW - licad width
ITWE - hind wiog feogh
HWW - hind wimg widsts
Mr - mid sibia length
MS - malar space
(C L - imminmen distance between posterior ocellos and occipital margin
(3) - ovpositor Jengit

OOL - minimun distance between postetion ocellors and cye thatgin
PG1.- minimum distance between postetior ocelli
SL - scape length
SW - maximuin scape width

Brelogs

The lite cycle of westert myall whitefly was construeted from ten population samples taken at approximately monthly intervals during SeptemberApril and less frequently during May-August over Hie period December 1999 to December 2000. Whitefly population smmples were taken from 20 matme trees. individually marked, jusi outside Roxby Downs township. At eaeh sampling time a healthy growing shoot was cut from esch tree at approximately 2.5 m fieight and individually stored in a paper bag. The samples were examioed within Iwo days of collection. On each shoot, five subterminal mamere phyllodes were examined and the number and stage of whiteflies were noted using $\times 20$ magnification onder a binocular microscope.
This intensity of samplixg yielded estimates of mean numbers of whitefly with the following saindard errors: for eges, 20% of the mean per phyllode. for each of secoud and third instar larvite. 25% of mean and for the pupal stage, 19% of the mean number per phyllode. First instar (mobile) larvae were rarely observed. The prescoce of any adult flying around frees was abo noted.
During the year 2000, ground surveys along station ttacks delimited the extent of the whitefly miestation. Trees with symptomafic dieback were inspeeted and the presenee of a whitelly noted. Nonsymptomatic trees were examined in every copse encountered along the mote, gencrally allowing at least 5 km alter each positive record betore resuming sampling. A tree was chosen $10-20 \mathrm{~m}$ away from the
track but beyond this, no special sampling seheme was used, On sach trec, 50 phyllodes were examined with the and of a land lens and, if any stage so of' whitetly were present. the tree was counted as positive. If nor whileflies were found on the tree examined, u nearby tree was sampled. If Ihre was positive, the site was scored as positive. The site was scored is negative only if no evidence of the whlef? was lound unt chthernce.

Zaphancra papyrocarpae Martin si), bw (1) GS 1-4, 7-17)

Inokyype: कf puparium, Billakilina Statum. $30^{\circ \prime} 165^{\circ}$ S. $136^{\circ} 17^{\circ} \mathrm{E}$, South Anstralia, on phylfodes of Icas m papyrvearpa, 26.iv. 2000 (3, H. Martin 74i66) (slide-mounted. ANIC')

Foratyper: South Ausiralia (all stide-mounted): I) कह (puparia). I6 क? (puparia) sunce data as holotype (\triangle NIS: BMNII. USNM. WINC): 3 名S (puparia) $6 ? 9$ (puparia) Roxby Downs fownship. $27 . \operatorname{iv} 2000$ (.1. II. Martin) (BMNIL. WINC), 25 puparia, 6 third-instar larvie, I second-instar larva, vicmity of Roxby Dowos, v. $) 999$ (J. Zwar) (\triangle NIC'): 29 puparia, 6 L3-puparium mid-moulds, 9 thidedinstar farvac. II fiest-instar larvac, vicinily of Rosby Downs 20.x. 1999 (P Bailcy) (BMNH, WINC): 14 puparia, 2 L.3/puparium mid-moults, 4 third-instar larvace vicinity of Roxby Downs $11, i, 2000$ (1 Hardy) (BMNHI, WINC): If adull के के. 9 adull of vicinity of Roxby Downs. 14.ii. 2000 (P Bailey) (RMNII):) L.3puparium mid-moult, 6 thed-mestar larvac, 37 second-instax larvac, 5 first-instar larvace, Ruxby Downs townsbip, 25.iv. 2000 (J, H. Martin) (BMNH).

Other'material: A large amount ol'dry material of all larval stages from the above collection sites is beld in BMNH and WINC.

Pequrinm (Fge 3. 4. 7. 8)

Shortly after the L3/l 4 moult shining black. dolost flat, hut with increasing maturity becoming markedly convex and developing covering of sparse greyish meal (Fig. 3); entire cephalothorax balling away upon emergence of adults (Fig. 3); sexuadly dimorphic, mate puparia $1.42-157 \mathrm{~mm}$ long, (1.81. 0.96 mm wide, widest opposite confluence of fongitudinal and transverse moutting subures (Fig. 7); antennal apices underlying incdian part of abdominal segment $\mathrm{I} / \mathrm{OI}(\mathrm{n}=16)$; female puparia 1.72-1.45 mm x 1.05-1.18 mon, widest abdominally: antennal apices terminating between middle and bind legs $(\mathrm{n}=14)$; puparia of both sexes $1.50-1.80 \mathrm{x}$ as long as wide margin crenulate throughout, (ypically $6-8$ rounded tecth uceupying 0.1 mol ol abdominal

Figs 1-6. Life history stages and damage of western myall whitefly, Zaphanera papyrocarpae Martin sp. nov. 1. Eggs on a phyllode of western myall. 2. One second instar (on left) and third instar larvae on a phyllode. 3. Adult female emerging from puparium. 4. Eggs and pupae encrusting phyllodes. 5. Damage by Z. papyrocarpae. A western myall tree in Roxby Downs township with early symptoms of dieback associated with Z. papyrocarpae on phyllodes (this tree died six months later). 6. Dead (left) and dying (right) western myall trees in pastoral lands of South Australia. Scale bars $=0.5 \mathrm{~mm} .1: 1$ mm. 2-4: $1 \mathrm{~m} .5,6$.

Figs 7.8. Zaphanera papyrocarpae Martin sp. nov., puparium. 7. Complete puparium with expanded detail of capitate setae and geminate pore/porette pairs. 8. Dorsal detail of vasiform orifice region (drawn from a teneral puparium). Scale bar $=0.5 \mathrm{~mm}$.

Figs 9-11. Zaphanera papyrocarpae Martin sp. nov., instars I-1II (not drawn to same scale). 9. Third-instar larva, dorsum. 10. Second-instar larvat, dorsum, 11. First-instar larva. Scale bars $=0.5 \mathrm{~mm}, 9 ; 0.1 \mathrm{~mm}, 10,11$.
margin: teeth rather irregular but not modified at caudal and thoracic tracheal openings at margin: anterior and posterior marginal setae present; dorsal chaetotaxy difficult to discern in mature puparia; all dorsal setae short, capitate: single pair of 8th abdominal setae placed anterior and slightly lateral to vasiform orifice: abdomen usually with 6 outer submarginal pairs, cephalothorax usually with at
single outer submarginal pair and 2 subdorsal pairs of setae (Fig. 7), but cephalic (submedian) setae absent; dorsum with longitudinal moulting suture reaching puparial margin; transverse moulting sutures curving anterolaterally and reaching margin; abdominal segmentation as shown, the intersegmental divisions of abdominal segments II/III to VI/VII exaggerated, thickened, suture-like,
:th ebrving sharply anteriad and almost reachong perparial magim: abdernimal division VII/VIII less exiggerated bui alse clusely approaching margen. submedian prockets variably marked depending on deggece of sumurity: abdaninal segment VIl wot reduced it length medially; abdominal rhachis evoldent, with laterall ams short (not to be confused with long interaegmental divisions): pait of submedian pomatorly direetod tubereles on posterior atge of sach of abdominal segments I-VI shoul with a pait of siroilar amteriorly disected nibercle 2 on the anterior edge of each of segments IfVII. Hfen appearing as 6 pain of charasteristic darker - $\mathrm{X}^{\prime \prime}$ " ligures; submedian abdemmal depressions present but canouflaged by these ruberoles: ceptaloiboracic equivalents clearly marked by irregular rings of paler markings. suhmargin with row of tiny prres. seen to be seminate pore/porette pairs only in toncral specimens, simitar pores seen in small groups adjacent it submedian depressions, vasiloten orifice cordate. slightly elevatted posterolaterally. inlly oecupied by operculan which olsacures lingulas in teneral specimens lingula as shown in Fige, \&, wiofour pical setab foharaciers of vasiform orifice esscmially the same throughnut larval stagesy: vasiform onilice about 0.06 mm Iong if male. 10.07 Britt in female , inset from posterior puparial magein by 2.0 -3.1 \times its own koyth in make, $3.3-4.1 \times$ it female: coudal furrow delined by shollow ridge is either side hu withou markings. eyespot markings absent. On venter antemad dimorphic as disctissed atoove, bases placed latecal to fore legs; legs cach wilh apical athesion pad: middle and hind leas eath whit tiny hasal seta and spine; ventral abdomimal setae placed slightly anterion to dorsal 8th ahdominal setbe: candal and thoracis iracheas diads prosent. narrow, pater that adjacent ebticle and punctuated by darker ovail markings: when venier separaled from the domsum. submedian ancal seest bt he much paler than sutmmatin/subdirsum (ar charmer rypieat ise haphanerar.

Prualonivar Tumat (figs 2,9)

Flongate wail. outline subtly constricted stightly. antecior It Tong mesi-metathoracic diyision (casily mistaken for eeplatothoracic-abdominal division hut tond legs cleaty underlic appareni lirst abdominal segment). at which point coatse marginal crenuldtions are somewhat fincr in some individuals: thitd-instar -exusia abserved to fold at this mesometathoracke division; sexual dimogphisem appatent. indivaduak falling into paige $1.0+1.09 \mathrm{~mm}$ long. 1) 49-0.53 mm wide (presumed male) or 1.78-1.27 mm long. 0. $56-0 . \mathrm{n} 3 \mathrm{~nm}$ wide (presumed female). all $2 .(6)-2.13 \times$ as long as wide $(\mathrm{n}=16)$, cuticle pale but with median pignented patch overlying moulbpars
and fore legs, another on abdeminal seggents I-ItI. and boownish imedian pigmentation present between vasiform orilice and ahdominal division VII/VIII: anterior and posterior inarginal setie present: dorsal thaetotaxy same as in puparia_ netae shon and blunt or very slightly eapitate; abdominal intersegmental divisions $11 / 2 I I$ to VI/VII propounced, extenditg into outer subdorsum: submedian ablominal depressions distinct. thoracie equivalemis marked as in puparia: submediun zone rhachisforms subrnargin with rove of geminate pore porettes: legs typical for third-iostir. rathor triangular, fore and middle pairs with apical pads dieected laterad hut hind pair directed posterionly: anembe vostigal, plued anterion to batses of fore legs.

Second-instar larva (Figs 2. 10)

I longate oval, outline subily constricted anterior to long meso-metatharacic division: which is only intersegmental devision extending ibto subdorsan:; cuticle mosity pale, bul with some dasky pigmentation on rhachisform suhmedian ateat sibe - $0.6(0)-0.70 \mathrm{~mm} \times(0.27-0.33 \mathrm{~mm}(11=34)$. macgin coarsely erenolate" zoterior and postetior mangimal sclac presenl. large with respecol io hody stee, dersed chaetoiaxy ipparondy as in puparimin and thaid instar, but unly 2 paties of thoracic and simgle pair of submedian Kth abdonminal setac distane in all specimens: other indiyiduats with of paris. of suhdorsal abdominal and ihird thoracic pair of sefol bases always visible but setac thenselves variably. - ar mat, developed; lesm yeminate pore/porente pains peseme atound periphery of rhachis: lugs subiriangular, spical pads destinct: anfermas vesiggal. anterior to fore legs, latoral io basial (anlerior) pari of rosital apparatus

Fipxt-manat ketwo (Tig. 11)

Pale, (1), 34-01, $70 \mathrm{~mm} \times(0,14-0), 19$ nm ($0=16$), margin wirl. It pairs of finger-like protrusions. smooth between them: each marginal protrwion beatime selia arterion and posterior-most 3 pais
 capitate: betsveen tho atterior-most 2 pars of prothasion-borne sctac is a pair zirising from the smoofl mangin, presumed to be the anterior nargetas setae: on this basts, posicrior marginal sotac sthsent is in second and third instars. mosi pronounces intersegmental division is belween mesor-and metathorax: dorsum with 4 pairs of eeptaborhonece and 7 pairs of abdominal subdorsal capitate setae; yentrally appendages reflect mobility of this stage, each leg woth single articulation betweer coxis femtor and libia/larsus; cuxa disecnible; darsus not distibet from hbia but slistal segment of leg with apparent single slaw-like apex and distinct elohbed sabapical digitule: each antenna with 3 distinet segmentis

12

Figs 12-17. Zaphanera papyrocarpae Martin sp. nov.. adult characters. 12. Male antennal segment III. 13. Male antennal segment IV, with single convoluted sensorium shown. 14. Female antennal segments III-VII. 15. Lateral view of male genital segment. 16, Lateral view of male aedeagus. 17. Dorsal view of male abdomen, with expanded detail of operculum and lingula.
distal one longest and extending possertorty for hase of middle leg: rostrat base and rentrat atbdomimal sclac line at lenst as lomg as vasionon orifice.

Rge (1in 1)

Black, bone at apex of a long pedieet angled suef that ege ilseff atnost bucties the phyllode sumface, loid in io phyllode surfaces, olten inierspersed weth latval stages.

tidufl mate Figes 12. 13. 15-17)

$1.73-1.87 \mathrm{~mm}$ loing (iucluding patameres). antenter 0.81-0.90 mm , ulfimate rostral segment $0.100 \mathrm{l}, 125$ n11\% $(n-4)$: whys sypical for Aleyroditaces with main vein of fore and hiod wing untrunthed. wings unpignented; abdomen bearing-4 maits al aval was gtands, about 0) $70-0.90 \mathrm{~mm}$ long (lig: 17): parameres, aedeagus, operculunin and lingula ats illustrated (Pigs 15-17); entire abdomen. unterior to genital segment, vory linely spinulose. apmeariog greyish under lower magniticatom: anconace with boly 4 visible segmenis, segment III usually distinetly ungled in its hasal thred and with smele, circular. ciliate sepsoriom proximad of this "cthonw" (Fig. 13), the 2 flagellar segments cach with much convoluted but apparently single, sensurium losping repoatedly around the sogment ((igs 12. 13)

Whilut fermake (Figs 3. 14)

$1.78-1.47 \mathrm{~mm}$ long, antconace $0.62-0.75$ mom. uhtimate nestal segment $0.10-10.13 \mathrm{~mm}$ ($\mathrm{n}-8$) : wing characters us in male; abdomen hearing only 2 pairs of oval svax glands, about $0,10 \mathrm{~mm}$ lone; abdominal aurface very linely apinulose, as in mate. antenfac $7-$ segmented, IV and V much shorter than remainder of flagellar segments: msually with segment VII bearing 2 simuous selfisoria (the distat one becing the longest). sugment VI with one sinuous sensofium and segenent III with a subapisal sensorium of irregular oulline but not elongate:

E'rmolegy

Named after its host plam, Acucia poynoneanma (Leguminosae: Mmosoideae), the western myall. from which it takes both its specific name and suggested common uame, western oyafl whitefly.

Tiasoummic relutionsstips

Amonyst the lour deseribed Australian species of Zophonerd, the poparia of $\%$ poupsocarme sp. nov. appear closest to Z niger (Maskell) and nearly key as such in Martin's (1999) key. Zaphanera papyrocurpue sliares with 12 miger a lack of submedian glandular patches, presence of submedian pairs of abutting abdominal ruberctes and execptonally pronounced intersegmental divisions

develep atigned atom: the narrow, subeylindrital phyllodes of the avestern myall. In wase mitally suspected that the new species might be a variunt of 7. mgor, developing greater convexity and a more elougate pupariat outline in response tis its feeding enviromment. However, closer examitutnm has indicatal several obler, comsibient, charactery then separate these fore laxa. The most striking chatauleristic of the puparis of \% paperocatpoe is the extreme forward-corving of the iransierse moulting sotwes and abdomital mitersegmental divisions $1 / / I f$ to V VI, a feature hot seen in any other examined members of the genas. whether described or not Poparia of $\%$ puppora aryan firther differ from those of $\%$ niger in only passessing three paifs of eephalothoracic setac of which two puirs ure displaced imto subdorsum (/.. niger has six cephalothoravic pairs. all submargimal), in not pusessing a submarginal pair of setac on abdominal seghent III (present in $\%$ niger) and in hasing a shon bateral flachis am issumg from the outer basal edge of each abdominat anteristly-stirected tubercle (thachis completely undeveluped in $/$. migou) Puparia of \% niger have very vinall, hut distinet. subinedian abdominal depressions mid way between the intersegmental divisions, whereas the depressions in 2 prapvrociupar are difficulf to sec. grven the greater development of the sohmedian abdominal tubercles. Third-instar latsae of \angle. popyocenpar are elongate-oval (more broadly rectangular in Z. niger) wifl charactenstic submediaf pigmentation (completely pale in 7 n/ger) and clongate submedan ahdominal depressions (crroular in Z miger) and with a pronounced subrodian thachis tompletely absent in Z. miger).
To date, the adults of \angle pupsyvicarpue are the only inagos known for any species of Zaphansra. Thus. no conclusions call yet be dratyon as to whether any of the several unusiat adull charagers sescribed above are generie or specific: Certainly, the presence of ionly foo pairs of abdominat was glands in the females is not usual in the Aleyrodinate and the characteristic convoluted antenmal seosoria of both sexes are simiturty remarkuhle:

Life certerol Zaphanera papyrocarpae

Westeru myall whitefly had two distinet generations per year during the study (Fig. 18). All atutumn-winter gencrafion commenced with eggs taid in late February and a sprong-summer gencrafion started from eggs laid in Octolect. The eggs hateh into moblie first instar harvac that could sometimes be seen dispersing of phyflodes. The sedentary second and thand instar barrac (Fig. 2) developed more slowly in winter than in the summer: The fourth IIIstal laryac ('pupae') were conspicmons on

 sp. mos. Aduls wherge from pupac during late summer and spring (6ip figure) and lay egegs (middle). from which deyclops the autimn-winter ind spring-summes generations of laryate (bottom). Sceond instar larvac are shown shiaded and third instars in black.
phyllodes, where large numbers often appeared io encrust the phyllode (Fتig. 4). This stage was closely associated with leat, shoot and branch death. No boneydew exudate was observed associated with any slage of whilelly development, nor were ants closely associated with whitetly larvac. Adults (Fig, 3) lived for only one or two days when allowed to emerge in the laboratory at $24^{\circ} \mathrm{C}$ and provided with moisture. The Fehruary 2000 sample was taken inmediately following rain and the adults were observed flying in small clouds momediately above shoos on trees.
liming of generations and life history stages can be roughly estimated from Fig. 18. Taking into account the period between egg layings, the autumnwinter generation takes approximately seven months and the spring-summer generation five months. Eggs appear to batch over a period of no more than four weeks. Duration of the second instar is about 6-8 weeks in March-April and $4-6$ weeks in SeptemberNovember. Duration of the therd instar is about 20 weeks in April-September and eight weeks in November-December. Duration of the pupal stage is four weeks in September but up to eight weeks in January-Fiebruary.

Dematreation oो tuthecok

Trees on which Z pappoocerppede were recorded are contained io at arca of approxionately 10.000 bm norih and north-west of Roxby Downs (Fig. 19), Trees showing symptoms of dicback and death associmed with western myall whitefly popolations were found throughout the area. Outside this arear. no evidence of any whiledly species could be found on any A. papyrocarpe tree

Within the area of infestations. Inulga brees (1. whesu() were sometimes found in close association with western myatl, in some cases with louching foliage These molga trees were examined but 7. papyrocargete was never recorded. However, another (undescribed) species of Zuphuthero was occasionally found on them.

Danage

Fied observations confirmed the association of $\%$ papyrvecurpae with dieback and death of trees, First reported by Ireland in 1998 (mompuh.). Of several hundred trees examined during the study. those with dichack symptoms wete always associated with the presence of western myall whitefly. Symptoms on mature trees included initial yellowing of phyllodes on small areas of the tree, followed by death of foltage on branches (Fig. 5) and then deatiof woody branches (Fig. 6). Onec dead patches appear on mature or young trees. death of the whole tree may occur within one year. As a rough estimate, areas of foliage with an average of $3-5$ pupae per phyllode were likely of die.

Larhopalodes amaxenor Noyes sp. not.
(FIGS 2()-27)
Holotype: R. Roxby Downs, South Australia, ex Zaphamere papsorarpas on - leackt paprocarpa. 22.x.1999, J. Lwar (ANIC).

Puratypes: South Austalia: 689.10 B $\overline{5}$. same data as holotype (ANIC, BMNII, WIN(').

Fimule

I.engit $1.13-1.40 \mathrm{~mm}(1.40 \mathrm{~mm}$ in holotype). Frontovertex pale orange-yellow, paler in ocellar area; face genae and temples concolorous but slightly paler; oceiput black bordered pate orangeyellow: radicle and most of scape concolorous with face, but outer face of scape with broad, dark brown dorsal stripe extending along most of dorsal margin: pedicel with basal two thirds dorsally and laterally dark brown, almost black, ventrally and at apex dusky. pale orange: flagellum testaceous brown. proximal segments darker: anterior half of pronotum black, posterior half translucent pale, yellow or white and elothed in translucent whife setac; mesoseutum

Fig. 19. Surveys of western myall trees on which western myall whitefly. Taphanera papyrocarpae Martin sp. nov.. was detected between November, 1999 and July, 2000. The northern edge of the outbreak was not delimited.
shining, metallic blue-green in anterior two-thirds, yellow in posterior one-third and along lateral margins, extreme posterior margin black; axillac yellow; scutellum mostly shining, metallic bluegreen mixed, posteriorly purple, apex and lateral margins posteriorly yellow; tegula white with brown apical spot; dorsum of thorax clothed in dense,
translucent, white setae; metanotum medially yellow, laterally black; prepectus translucent white, anteriorly dark brown; mesopleuron with small yellow spot below tegula but generally metallic green, bluish posteriorly, slightly purplish dorsally: prosternum metallic green; fore leg with coxa and femur yellow, tibia yellow mixed dusky and

Matgined brown dorsally and veotrally, tarsus pate hrowa mixed yellow. prelarsus dark browns miesusternten metallic green: inid coxa metallic green and clothed in conspicuous manslicent, white setac, ipex yellow, femur ycllow, tibla slightly dusky yellow with an inconspictous brown stripe alone most of dorsal margin. tarsus pale yellow with pretarsus dark hrown; hind coxa metallic blete-green mixed with purple and clothad with translacent palc brown gr whilish setae: hind femur yellow, hind tibia yellow hut with narrenv brown band at hase and twe broad, hrown hands at one-third and two-thirds its length respectivels: tarsus dasky yellow. pretarsus dark browns, wings complecty byaline, venation hrown: melapleuron metallic green and clathed in vonspicuous transfucent white setae; propodeum medially hlack with slight sheen. greenish towards spifactes, shione blue-green satside spiracle here abd elothed indense conspiemos, translucent white setac: gaster dark brown but with strong, menallic blue-green or purplish slicen and elothed in bairly conspictious, translucent. white setac on basal tergitu and laterally: visible paty or genostylue yellow wifh extreme apex brownist: head about 3.3 x as broad as Fromberctex which is about 1.6 s as hong as brond and narmivesf between anterior ocellus and top of scrobes, ocell forming an weute angle ol about 70 : autemal It ig. 20) with scape almost eylindrical a little less than 5 x as long as broad; H1-5 sulquadrate distal segments largest. For clearly transverse and largest; elava with apieal sensory area distinet giving apex slightly obliguety truncate appearance: hincar sensilla on $\mathrm{C}-\mathrm{fi}$ and clava: mandibles (Fig. 21) midentate, upper tooth somewhas Huncate: relative measuements: HW-76, EV $=25$, POL-12.5, OOL $2.5, \mathrm{OCL}-7 . \mathrm{MS}-25 ; \mathrm{F}:=42$, EW-39. SL 29, SW-6,5, Visible pari of mesoscutum about 2 x as broad as long: scutellum hardly shorter than mesoseutum and slightly brosader than long: fore wing about $2.6 \times$ as long as brolds: lomea clava not interrupted, but closed by one or two lines of selae neat posierier wing margin; basal self densely and eventy pulowe: venation as in Fig. 22? relative micasuremems: EWL $=1 \times 5$, EWIV-71. HWI 135. HWW-42: gation about three-fillos as longeas thorax: ovipositor as in I'ig. 24 exserted pari less than ore-fith us fong as mid tibral spur: liypopygium (Fig, 23) nachung about half way atong gaster, refalive

Malc

Length (0.98-1.29 man; very simidar to female sseept for some small differences in colouration, avider Fontovertex, antenal stuctue (fig, 25), less dense setac in basal eefl of forenciny and structure of genilabia; coleut as in lemale bul for small, medallic: green sool immestately behind anterine opellus.
llayetlum generally yellow with ovireme apes of clava brown: mesoscuman, axillae and scutellum completely metallic blue-green; fore tibia with only a small subapical. brown spol on dersal margin ohterwise fore and mid litia yellow: hardly marked with brownc head about 2.3 x its broad ats frontovertex which is uhbut $1.3 x$ as long as hooad and narrowest about level with anterion margias al posteriot ocells: serobes broad. subparallel and moderately deep: a small depression betwees cath scrobe dursally and eye which possibly accommodntes F 1 in resting positiont ocelli forming angie of abeur 95^{\prime}, amfenuat iorulus separated from moulh margin by slightly more than 1.5 * its m wh Jengit with ventrat neagin a litde above lower eye margin; antena (F ig. 25) with scape shortand obly about 2 x as lone as broad: flagellom stoflied in long sclue which on provimal segments dosatly are etearly longer thein diameles of segments; Pl sulhuadrate and with deen. dorsal grose giveng it a 1 1 -shaned appearance (Fig. 26); 52 -f 6 about $1.5 \times$ ab lorig as bosed but giving the rest of the fimiele at slightly serrate appearance: clava subcylindrical and a litte lesw than $3 x$ as long as broad, with apex mors or less transersely truncate: relative measurencent: HW-71, FV 31. $\mathrm{POL}=19, \mathrm{OOL}=3, \quad$ OCL -7 MS 20. 12- $35,1: W-30 . S L=20, S W-45 ;$ Fore wing nbout 2 sas long as hoad busal ecll with netie conspieuousty less dense than in apical hatr of wing with distinct naked areas noar base and befow panstigma: relatice measarements: 1-WL -6h, FWW 31. IIWL-47. HWW $=14$; vedeagns about half as lone as mid tibia, its apex broadly spatutats (Fig. 27): relatve mensurenients:AL-32, M1: 70 .

Host

Zurtripulmiker anazenar was reared fiom Zaphamoca papyrwouquae Martin sp. nos. (Hemptera:-Aleyrodidac) on Lezeia popsrocaepa.

Tixememice relationvihips

Zurhepaluides has been characterised by Noyes \& Hayas: (1984) and Dahms of Gordh (1997) und includes four previously deseribed species. Females of 2 anascuer sp. nov. are these similar to those of 2 specinsts Girault in general structure and coleutation of the had and dorsum of the thomax. The iwo species call be distimguisthed on the distribution of linear seasilta on the functe and colouration of the hind ribise ats fore wing. In $/$ atuaremot lincar sensifla ture present obly on Fi-Fb. the hind tihia has a pair of disticet brown bands and the tore witg is eonpletcly lyadiace, whereas in Z. speriosus all tumicle segments possess linuar sensilla, the hond tibia is alnosis completely frown without any distinet hande and the fore wing has a lage subcircular infuncate area bolow the meagenal

Figs 20.27. Zurhopalofes anaxenor Noyes sp, nov. 20. Female amlenna. 21. Mandibles. 22. Fore wing venation. 23. Femake hypopygium. 24. Female ovipositor: 25. Male amtema. 26. First fumicle segment, male. 27. Male genitalia tinset - apex of aedeagus).
velli. Females of the ather species difles ith haviry the fronemeitex and face largety metalie ageen ($/$ 各 sitw (ithoras (ciraulb), a subercular infuscite area below ibe marginal vein (1. antwaput (Giraulo) or at lean F 1 sterngly imansverso and ubout 2 x us broad us lone (Z. anmicaput and 7 axillacis Giraule). Males ate kowen only log $\%$ comelibuoras and have the antennal flagellum filiform with I I unmodified and ctothed in setac whichare very much shorten than the diameter of the segments.

There are few athenticated secords of tincyrtidace as patrasitoids ol whiteflies. To date. species of 11 encyrtid eenera have been iccorded as whitefly parasilonds (Noyes 1998). Most of these are likely io be erroncolis observations of ofie-oft "aceidents' where speces that normally allack diaspidd seales or ther smaller voccoids may attempi to parasitise atcyrodids when their mormal hosts are searec. (bher than some undescribed species of Metophectes frequently reared trom whitefles in South Aomerisi (Inaterial in BMNFI) and Rhopms errazthi (Myarsteva) (count. nov. Irom Platirhoopens) from cembal Asia, \& umasenm appests to be the lirst soceice to the authenticated as a trae parasitoid of aleyrodids.

Ralkes af parasifism

Parasibised pupar were identilied by the cirenlor sxit hole and predated popae by a jaged hole. The only parasitord thal emerged from samples of \% 2 papsmaderme was Zarhopuloules atheremer Noyes ©p. nov. The bates of parastisst of pupae of / / Pafyyocapoe are shown for two periods in Table 1. No parsutod exit hores were detected in ing stage sther than the pupa.

Dite billected	Tolal рірае (ii)	jarasilism	predation
1518in 20000	94.	t	≤ 19
$250 \mathrm{Oct}, 2000$	281	10	$\sim 1 \%$

Piscussion

The nuibreak of westen myall whitelly and the associated death of many of its hose trees is pmusoul nod the enise(s) have not been sstablished with any certainty doring this sudy. A number of possible causes are discussed below

Fablum ufinutural versemes

The parasitoid Z amasemo was the only matural enemy idemalied durng this study but the hiolagy of this wasp has but yet heot studed in detail. The fate of parisitism on western myall whitedly was 16

Etcatef thant 190\% durmg this sudy and so it is unlikely to hase been stentifant in teducing numbers of lhis species.

There was mer evidence that the gulbreak nit Z
 generalist predators or parasitoids. The presenec of predators was inferred trom dagged botes in puparia but predation of younger sfages of whifefly wes unlikely to have been detected beeause evidence of these stages may fall from the phyllode. I gigs of brown lacewings (Mioroutes spp, - Ncuroplera: Hemerobiidae) were frequently observed on sampled phyllodes. Thas. the influenee of general predators may have been greater than indicated by these results. However, any failure of these predators should bave been in evidence on wher species of trees. At a number of sites in the Raxby Downs anea. westetn myall (d. papyrocarma) irecs infested wilh whitefly grow in close proximity to mulea (1. anclura), somelimes with overlapping canopios. (burefil searching of such mulga irees yielded a different species of whitefly but in very lass in numbers. This nugga-assoeiated whitelty waseleorly not undergoing bay increase in population which mught be expected if generalist natural ememies had been absent from the area.

in new introduction

This study has not eliminated the possibility that the original plant boss of the whitefly was a species of Seacia other than A. mprorucurpu. Searches of naturally-becurring Acacia species in the area of Roxby Downs did not yicld any 7. papyrocatpac on hosts other than western myatl. It is possible that Jenk ia species exotic to the Roxby Downs region may have been introduced and carried the whitefly to the area. This whitefly may then have switeled 16. deacia papsracarpa but not to mry other deata speces in the areat. Martin (1999) noters that the related species \%. niger bas fhree recorded honsts: -Icacia premanthat Bentham. I. Iongilolia (Ardrews) Willd and 4. melanowglon R. Br. More data on the host range of $\%$ papyracarpou need to be collected to test the hypothesis that this whitelly hate recently istapted to A. papyrocarpos.

Tree heallh

Dying western myall arees were first moficed in the township of Roxby Downs in 1998 (Ireland impub.) Roxby Downs is a mobing towa constructed during the past 20 years around existing communites of ntalure western myall frees. A large copper-uranium mine is localed some 20 km from Roxby Downs and, beyond the limits of the mine area itself. there is no evidence of acrial or effluent emissions in the amosphere of greundwater which might affieet tree beshol.

Some trees within the township had their extensive root systems disturbed by road works and other trees had changed water availability, mainly an increasc. resulting from garden irrigation. While the western myall trees in Roxby Downs township live in a disturbed environment, the same is not true of the symptomatic trees up to 100 km distant in the pastoral areas to the north and north-west of the town where land use has changed little during the past 100 years, with sheep, cattle, rabbits and red kangaroos as the main grazing and browsing macrofauna. White (1993) argues that nutritional status of host plants may cause outbreaks of insect populations. In the present case, western myall trees under some form of stress may have provided optimum conditions for the hitherio uncommon Z. papyrocarpae to increase its reproductive rate temporarily to outpace its natural enemies. However, the area containing symptomatic trees covers about $10,000 \mathrm{~km}^{2}$, including both recently disturbed township arcas and pastoral arcas whose land use has remained unchanged for many years. Age of trees does not appear to be a factor, as
both younger ($1-2 \mathrm{in}$ high) and older trees, up 106 m high, and at least 160 years old (Lange \& Sparrow 1992) or older (Coleman et al. 1996). sustain high whitefly numbers and exhibit dieback and death. There have been no discernible changes in rainfall patterns for the past 70 years. Therefore, since conditions for tree growth have remained much the same, there is no evidence to support the suggestion that poor tree health was a contributing factor to the outbreak of western myall whitefly and consequent death of trees.

Acknowledgments

We wish to thank WMC (Olympic Dam) for their interest and co-operation during this study. In particular, J. Zwar, K. Ashby and J. Read provided encouragement, suppert and critical comments in equal amounts. Our thanks also to J. Hardy who helped with field and laboratory work. M. Iqbal who assisted with the preparation of digital images and plates. E. Kaesler, who compiled Figure 1 and N. Schellhom who kindly read the manuseript.

References

DAHivs. E. C. \& Gornit, G. (1997) A review of the genera of Ausiralian Encyrtidae (Hymenoptera: Chaleidoidea) described from Australia by Λ, Λ. Girault with a checklist of included species. Mem. Ent. Imt. 9. 1-518.
Lange. R. T. \& Sparrow. A. D. (1992) Growth rates of western myall (Araria papynucarpa Benth.) during its main phase of canopy spreading. Aust, J, Ecol. 17, 315320.

Martin. J. H. (1999) The whitefly fawa of Ausiralia (Stemorrbyncha: Alcyrodidae). CSIRO Ent. Tech. Pap. 38.

Noyes, J. S. (1998) Catalogue of the Chalcicoidea of the World, Biodiversily Catalogue Database and 1mage Library CDrom Series. ETI/The Natural History Muscum.
eHaras. M. (1994) A revien of fhe gemera of Indo Pacific Encyrtidae (Hymenoptera: Chalcidoidea). Bull. Br: Mus. (N. H.) (Entomalogy') 48. 131-395.
Whith T. C. R. (1993) "The Inadequate Enviromment. Nitrogen and the Abundance of Animals" (SpmagerVerlag. Berlin).

Biodiversity Heritage Library

Bailey, P. T. et al. 2001. "Taxonomy and biology of a new species of Zaphanera (Hemiptera : Aleyrodidae) and its association with the widespread death of western myall trees, Acacia papyrocarpa, near Roxby Downs, South Sustralia." Transactions of the Royal Society of South Australia, Incorporated 125, 83-96.

View This Item Online: https://www.biodiversitylibrary.org/item/128852
Permalink: https://www.biodiversitylibrary.org/partpdf/81653

Holding Institution

South Australian Museum

Sponsored by

Atlas of Living Australia

Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder. License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: South Australian Research \& Development Institute. Entomology Section. Waite Campus, GPO Box 397 Adelaide SA 5001. E-mail: bailey.peter T ${ }^{(\omega}$ saugov.sa.gov.au
 \& Department of Entomology. The Natural History Museum Cromwell Road London SW7 5BD UK.
 \% Department of Applied \& Molecular Ecology and Centre for Evolutionary Biology \& Biodiversity. Adelaide University Waite Campus Private Bag I Glen Osmond SA 5064.
 Coheman, D., Irbland, C. \& West. N. E. (1996) The liferpan of western myall (Acacia papywocarpa Benth.). "Rangelands in a sustainable biosphere". Proccedings of the Fifth International Rangeland Congress Salt Lake City, Utah, USA 23-28 July, 1995. Volume 1 contributed presentations. 1996, 99-100. (Society for Range Management. Denver, Colorado, USA) (unpub.).
 Ikbland, C. (1997). Sustaining the western myall woodlands: ecology and management. PhD Thesis, Department of Envirommental Science and Rangeland Management. Adelaide University (unpub.).

