INCABATES HAMMER AND SETINCABATES GEN. NOV. (ACARIDA: CRYPIOSTIGMATA: HAPLOZETIDAE) FROM SOUTH AUSTRALIAN SOILS

by D. C. Lee*

Summary

LeE, D. C. (1993) Incabates and Setincabater gen. pow. (Acarida: Cryptostigmata: Haplozetidae) from South Australian soils.. Thans. R. Snc. S. Aust. $117(2), 77-85,4$ Junc, 1993.
Incabates Hammer is commented on and an allies genus, Setincubates gen. nov., established. Three new species are described from South Australian soils; I. macronudus sp. nov., 1. punctatus sp, nov. and S. hypersetosus sp. nov. (type). 1. angustur Hammer, previously known from New Zealand, is newly recorded from Australia and I. medius Hammer is newly regarded as its junior synonym. A key is given for the adults of these four species. This is the first record of Incabates from Apstralia. An African species previously grouped in Incabates is newly combined as Muliercula longisaccula (Mahunka).

Key Words: Incabates angustus Hammer, Incabates nacronudus sp. nov., Incabates punctatus sp, nov, Setincabates hypersetosus gen. nov., sp. nov., Haplozetidae, Acarida, soils, South Australia.

Introduction

The genus Incabates Hammer, 1961 and a similar undescribed genus are examined as part of an ongoing study of sarcoptiform mites sampled from nine florally diverse South Australian sites, and for which Lee (2987) provided an introduction to the relevant work on the adyanced oribate mites, The relevant mites are from soil and plant litter or mass under either savannah woodland, sclerophyll forest, mallee or coastal vegetation at only four of the sites.

Incabates is grouped in Haplozetidae Grandjean, 1936, which has been discussed by Lee \& Shepherd (1990) in considering Magnobates Hammer, 1967. Relationships between Incabates, the new genus and some other haplozetid genera are discussed. I. angustus Hammer, 1967 is newly recorded from Australia, and two new species of Incabates and the new genus together with one new species are described.

Material and Methods

New material examined here, collected by the author, is deposited mostly in the South Australian Museum (SAMA), but also in the Natural History Museum, London (BMNH), the Field Museum, Chicago (FMNH) and the New Zealand Arthropod Collection. Land Care Research, Auckland (NZAC), whilst previously described material is deposited in tite Zoological Museum, Copenhagen (ZMC). The morphological notational system follows Lee (1987), the somal chactotaxy of which is summarised in Figs

[^0]2 and 3, with the total setae present in cach file (e.g. 62) indicated by number coming first, whilst a particular seta (e.g. Z6) would have the number last. The venter and legs have been described only for Incabates punctaus because of their uniformity within the genus. The abbreviations for zoogeographical regions follow Lee (1970, Fig. 427). Descriptions of eggs are based on those still within the female soma. All material was examined using a Nomarski interference contrast device. All measurements are in micrometres $(\mu \mathrm{m})$ and were made using an eyepiece micrometer at $\times 250$ magnification.

Key to Australian Incabates and Setincabates species

 (adults)1. Thirteen pairs of hysteronotal seta. Hysteronotal foramen F3 sacculate without narrow duct

Setincabates hypersetosus sp. nov, Ten pairs of hysteronotal seta or alveoli. Hysteronotal foramen $F 3$ sacculate with narrow doet ...e. Incabates.
2. Hysteronotal setae represented only by alveoli. Tutorium absent \qquad I. macronudus sp. nov, At Jeast one pair of hysteronotal setae present. Tutorium present
3. Six posterior small hysteronotal setal pair piesent (J5, J6; Z5, Z6; S5, S6). Anterior soma punctate L. punctatus sp. nov. One posterior small hysteronotal setal pair present (16). Anterior soma sot punctate I. angurtus Hammer.

Systematics

Incabates Hammer

Incabates Hammer, 1961, p. 108 (type species by monotypy: Incabates nudus Hammer, 1961); Coetzer, 1968, p. 25; Balogh \& Balogh, 1984, p. 274; Loxton, 1985, p. 67; Corpuz-Raros, 1980; 174.

Definition: Haplozetidae. Hysteronolum with te pairs ($2 J, 6 Z, 2 S$) of short setae, microsetae or alveoli withxut their setac. Hysteronotal foramina with sarcule bag-like, either lapering gradually to pore or with short narrow duct near pore. Dorsosejugal furrow entire. Translamella and prelamella absent costate or lineate tutorium (between setae $j 1-z_{2}$) sometimes present. Rostral geta (i) directly in front of lamellar seta (21)Pteromorph movable, with clear weakly sclerotized basal line. Discidium triangulate. Tibia I with large solenidium ($\mathrm{sm} / 2$) on tubercle. Tibia II without distodorsal spur. Genu I and II with twa setae (y ubsent). Trochanter (V usually with distodorenal process exicoded over femmir IV (exception: Incobates augustus), distodorsal crown with only anterior angulate lobe, broad flange extendiug along entire venter of caput. Pietarsus with three claws, slimmer fateral claws with pointed tip.

General Morphology of Australian species: Samal length range for adults: $239-445$ (for all species 239-496). Somal chaetotaxy: $2 \mathrm{j}, 2 \mathrm{z}, 1 \mathrm{~s} ; 2 \mathrm{I}, 6 \mathrm{Z}, 25$; $3 L_{1} 11 I I_{1} 3 \mathrm{III}, 3 \mathrm{JV}, 4 / \mathrm{Zg}, 1 \mathrm{Sg}, 2 \mathrm{IZa}, 3 \mathrm{Sa}$. Leg chaetotaxy (solenidia in parentheses): 1-1,5,2(1), 4(2), 20(2); II $-1,5,2(1), 4(1), 16(2) ;$ III $-2,3,1(1), 3(1), 15 ;$ IV $-1,2,2,3(1), 12$. Alveolio of somal seise bounded by refractile ring, canal short and tapering without internal refractile ring. Pteromorph may lie close to pleural surface or be liftod away from it. Sub-bothridial flange present. Apodernes I, II, ventrosejugal and III present. Ventrosejugal gap not wider than genital urifice. Sobpedal and circumpedal ridges merged into single continuous line. Slit-小like pore Saf nearly longitudinal (less than 45° from longitudinal axis). Proximoyentral spur on femur I withruf caput collar. Conspicuous ventral flanges on femora II, III, and IV, on femur II margin curved, not angulate.

Distribution: Penu (NTc), Japan (Pc), Philippines (Omi), Australia (As), New Zealand (An), Fiji (Ap) All spocies from outside South Australia are from moist localities, often it moss, cither int high altitude grassland or in forest or mangroves, and are sometimes arboreal, In South Australia all three species were collected from the silerophyll forest site, which has the highest rainfall (annual mean in the range of $150-1200 \mathrm{~mm}$, mastly in winter). but Incabates punctatus sp. nov. was also collected from the two mallee sites which are dry (mean annual rainfall in the range of $350-500 \mathrm{~mm}$).

Remarks: Incabates was considered allied to Protaribates Berlese, 1908 when it was established. More recently it has been allied to Scheloribates Berlese, 1908 (Corpuz-Raros 1980; Laxion 1985), to which it is similar in having a triangulate discidium, tyyteronotal sacculate foramina that graduaily taper to a pore, and, for some species, in having no tutorium (in species will a tutarium, it only costnte). In contrast, Incabates this a derivat character state, a hinged rather
than a fixed pleromorph as in scheloribatid genera, on the basis of which, Cnebter (1968) suggested that Incabates should be transferred to the Haplogetidae Grandjean, 1936. Because Incubates also has a derived trochatiler IV (the distoventral crown with ouly an anterior lobe that extends along entire venter of caput), and if there is a lateral proteronotal ridge it is a tuthrium rather than a prelamella ridge, this grouping in the Haplocetidae is followed bere.

In current classifications of the Oripodoidea, the Haplozetidae are mut closely allied to the Protoribatidaue Balogh \& Balogh, 1984, because of the importance given to the former family having derived sacculate hysteronotal foramina, tather thà muluporose foranims; but both Incabates ano Protoribates have derived binged pteromorphs. The sigmificance of particular character states and so the accepted relationships amongst oripodoid taza, may well change eynsiderably. In this paper it is considered that, since Incabates shares some character states with most genera of the more primitive Scheloribatidae Grandjean. 1933, characler states that are derived in many members of the Haplozetidae (the discidium is rectungulate, the tutorium is conspicuously laninate and hysteronotal sacculate foramina often have narrow ducts leading to their pores), it is more primitive than Magnabaies Hammer, 1567 and the genera closely allied to it (Lee \& Shephend 1990).

In distinguishing Incabates from other gencra, the following scheloribatid genera must be considered: Muliercula Coetzer, 1968, Naumerlia Coeczer, 1968 and Styloribates Jacor, 1934. These three genera can be regarded as derived within the Sclbelorthatidae becsuse of character states of the proteronotum and trochanter IV. In general, members of the Scheloritatidae fold leg 1 against the soma so that the tarsus points downwards behind setaj j, Iy ing behind the pretamella ridge, also trochanter IV is simple, with the crown contined to the distal end. In contrast, haplozetids and the three scheloribatid genera listal above, have a tutorium of subtutorium rather than a complete prelamells and, when the leg is folded, tarsus I can point forward between setae zl-jl, whilst or itechatiter IV, the crown extents as a broad flange along the entire venter of the caput. Therefore, these three scheioribatid genera are unly distinguishod from the haplozetid Incabates by having fixed pteromorphs, which is sometimes a difficule churacter state to assess. Furthet studies may require that these four genera are cither grouped into a new faimily or that the Scheloribatidae and Haplozetidae are merged.
The naming of a species, that is very similar to the type species of Mutiercular, as ? Ireabates lomgisaccuitus illostrates this confusion. It is here combined as Muliercula longisaccuda (Mahunka, 1984) comb. now, despite its lack of a tutorium and the presence of a partial prelamellar. This is pardy because these
character states are variable in Incabelles, and therefore the presence of a tutorium may not be diagnostic of Muliencula, but it is mainly because the pteromorph is only partially delineated from the hysteronotum by a clear furrow as described for Muliercula, where it is regarded as fixed, alchough ambiguously described by Coetzer (1968) as "pteromorphae immovably hinged". Because of the similarity between Incabates and Muliercula, despite their grouping in separate families, only the more extensive wing-like expansions of the lamellae of M. longisaccula and its occurrence in Africa support the new grouping.

In comparison to other haplozelid genera such as Haplozetes Willmann. 1935 and Magnobates Hammer, 1967 , Incabates is regarded as printitive in having a triangulate discidjum; as on oribatulid and schelaribatid adults. Similarly it has only two setae on genu I and the alyeolar canal of the somal setae is short and simple.

Jncahates includes seven species: L angustiss Hammer, 1967 i $=1$. medincs Hammer, 1971, syn, nov.) irom Austrailia (Aa), New Zealand (An) and Fiji (Ap); f. mácronudus sp. nov. from Australia (Aa); I. major Aoki, 1970 from Japan (Pc); L nuchus Hammer, 1961 from Peru (NTi) and Philippines (Om); , pahabaeus Corpuz-Raros, 1980, from Phillopines (Om) ; $/$. punctatus sp. not. from Australia (Aa); 1, strians Corpuiz-Raros, 1980, from Philippines (Oms).

Incabates angustus Hammer

Ficahates angusnus Hammet, 1967, p. 43, 44, Fig. 57, 57. Insuikaties medius Hanumer, 1971, p. 42, Fig. 49 49a, syn. now.

Type material examined: J. angustus, lectotype Q (labelled "rype" is vial of alcohol, three specimens recorded in original description) examined (ZMC), liverworts and small ferns, dead tree trunk, native forest, Waitakere National Park, North Island, New Zealand, M. Hammer, 1962 . I. medius, lectotype Q (lahelled type in vial of alcohol, two specimens recorded in original description) exarnined (ZMC). whthersed leaves, river bank above mangroves, Corolevu, Vita Levu, Fiji Islands, M. Hammer, 1962
Female: Soma oval, brown Idiosomal length (original description from New Zealand: Gbout $0,35 \mathrm{~mm}$, from Fiji: dabout 0305 mm), 335 ($\mathrm{n}=1$, New Zealand) of 318 ($n=25$, Sclerophyll forest, 306-332). Leg lengths (femur-tarsus, Sclemphyll forest, for 320): I-142, II-127, III-108, IV-137. Thbial maximum heights (for 320): 1-22, IT-17, III-14, IV-14.
Proteronotoms with mediun width costrum, Integument smooth. Tuiorium present, sometimes indistinct level with lamellar seta (2l). Sensory seta (2) with giobular caput longer than exposed stalk. Subbothridial Aange inconspicuous. Aosterior margin of bothridium raised to form tooth-like spur. Interlamellar
seta (j2) longer than distance j2-z1, Hysteronotum with only one pair (J6) of noticeable small setae, nine pairs (55, 21-6, S5 and 6) of alveoli, pessibly with small microsetae. Alveolus $S 5$ posterior to 25 (South Australian spectmens) or anterior to 75 (New Zealand specimens). Foramen F3 conspicuously larger and sometimes sacculus bilobed (South Australian specimens) or slightly larger, not bilobed (New Zealand specimens).

Idiosternal setae fine and short, coxite seta $\beta_{3}, I / 73$ and $1 / 3$ (not illustrated as present by Hammer, 1967: Fig. 57a) longest. Integument smooth except for indistinct teticulations around ventrosejugal apodeme and apodeme III. Discidium height less than $0.5 \times$ height of pedotectum $I \Pi$, coxite sets $I / 3$ neear discidium base. Eggs subellipsoidal, exochorion smooth, mean size $151 \times 72(\mathrm{n}=7)$, length 48% of somal length, eggs per female $-I(\quad(\square=3)$, or $2(n=2)$.
Legs short (median fermur-tarsus length: 40% of somal lengdi) with stout girth (mean maximum tibial height 50% of mean length). Trochanter IV anterior margin parallels posterior margin of femur IV caput. angulate distodorsally but withoun process extended over femur IV.
Male: Similar to female but idiosoma shorier, mean length, 293 (7. Sclerophyll forest, 283-303) or 319 (1, Savathalr woodland).
Referred material: 12 lemales (SAMA N19911 N199112), seven males (SAMA N199113 - N199119), plant litter, sparse moss and sandy soil under sclerophyllous shrub amongst messmate stringybark (Eucalyprus obilqua), dry scleropbyll forest, near summit of Mt Lofty ($34^{\circ} 59^{\prime} \mathrm{S}$, $138^{\circ} 45^{\circ} \mathrm{E}$), Cleland Conservation Park, 9.v. 1974 .

One maie (SAMA N199120), grass, moss, plant litter and loamy soil, under manna gum trees (Elucalyptus vininalis), savannah woudland, Chambers Gully ($34^{\circ} 58^{\prime} \mathrm{S}$, $138^{\circ} 41^{\prime} \mathrm{E}$), Cleland Conservation Park, 12.vi, 1974.

Remarks: Incabotes angustue was one of four species that have only a single pair of bysteronotal seta (/6), but one of the other three species, I. medius from Fiji, is here synonymised with it. The other two species, 1. striatus with a striated integument and the stouter I. mudus with a much broader lamella, are easily distinguishable as separate species. The slim I. angustus and I. medius are very similar with the new material from South Australia having interthediate character states. I, apigustus is $350 \mu \mathrm{~m}$ long, has hysteronotal seta S6 anterior to 55 and the interlamellar seta ($j 2$) is about $0.75 \times$ the length of the lamellat seta (z1). L medius is $305 \mu \mathrm{~m}$ long, has hysteronotal seta S6 level with SS and the interlamellar seta is about $0.5 \times$ the length of the lamellar seta. The specimens from South Australia are similar in size to I. medius, bave seta 56 posterior to 55 , and the relative sizes of the interlamellar and limellar setae are as 1 . angustus.

Fig. 1. Incabates macronudus sp. nov., female soma, notum.

These differences are here regarded as intraspecific variations within a species distributed across Australia, New Zealand and Fiji, and comparable with differences within I. nudus from Peru and the Philippines (Corpus-Raros 1980).

Incabates macronudus sp. nov.

Type material
Holotype female (SAMA N199121), plant litter, sparse moss and sandy soil, under sclerophyllous shrub
amongst messmate stringybark (Eucalyptus obliqua), dry sclerophyll forest, near summit of Mt Lofty ($34^{\circ} 59^{\prime} \mathrm{S}, 138^{\circ} 45^{\prime} \mathrm{E}$), Cleland Conservation Park, 9.v. 1974.

Female; Soma oblong, brown. Idiosomal length 446 ($\mathrm{n}=1$). Leg lengths (femur-tarsus for 446): I-178, II-163, III-142, IV-166. Tibial maximum heights (for 446): I-22, II-17, III-14, IV-14.

Proteronotum with narrow rostrum. Integument smooth. Sublamella obscured in dorsal aspect by laminar lamella. Tutorium absent. Sensory seta (z2)

Figs. 2, 3. Incabates punctatus sp. nov., female soma. 2, notum; 3, idiosternum

Fig. 4. Incabates punctatus sp. nov., female right legs I-IV, femur-pretarsus, also trochanter IV, posterior aspect. Only two setae illustrated ($v=$ ventral).
clavate (caput may appear globular if viewed end on), caput subequal in length to exposed stalk. Subbothridial flange conspicuous. Posterior margin of bothridium raised to form tooth-like spur. Interlamellar seta (j2) longer than distance $j 2$-z1. Hysteronotum with no obvious setae. Alveoli form clear refractile rings, microseta recognised in $Z 2$, may be present elsewhere. Extra alveolus between $Z 2$ and $Z 3$ on right side only. Foramina with conspicuously refractile saccule, $F 3$ oval and larger than other saccules.

Idiosternal sctae fine and short, setae B and Sal the longest, setae III3 and IV3 not located. Integument smooth except for indistinct reticulations around ventrosejugal apodeme and apodeme III. Genital seta $J Z g 2$ midway between $J Z g 1$ and $J Z g 3$, rather than closer to.$J \mathrm{Zgl}$. Discidium height less than $0.5 \times$ height of pedotectum II, coxite seta IV3 not located. Egg
subellipsoidal, exochorion smooth, mean size $166 \times$ $70(\mathrm{n}=4)$, length 42% of somal length, four eggs in single female.

Legs short (median femur-tarsus length: 36% of somal length) with stout (mean maximum tibial height 39% of mean length). Trochanter IV with blunt process on angulate distodorsal margin which extends over femur IV.
Remarks: The name macronudus is from the Greek for 'large' and the Latin for 'naked' and refers to its body size and the absence of recognisable setae on the hysteronotum. I. macronudus is the only species known in Incabates with no easily observable hysteronotal seta (I. nudus has one pair) and with I. major it has a somal length greater than $440 \mu \mathrm{~m}$. Because there is only one specimen, it was not dissected, which may explain why some coxite setae (III3 and IV3) have not been located.

Incahates punctatus sp. nav.

Thpe material

Types: Holotype female (SAMA N1987645), soil, plant litter anil sparse mioss under ridge-fruited mailee (Eucalypias incrossata) clumps amongst broombush shrubs (Metalesca uncinata), Ferries-McDonald Conservation Park ($3^{\circ}{ }^{\circ} 5^{\prime}$ 'S, $139^{\circ} 09{ }^{\prime} \mathrm{E}$), $20 \mathrm{vi}, 1974$. Paratyper, 45 femates (SAMA N1987646-N1987654, N199122 - N199142, five - BMNH, five - FMNH five - NZAC) and 55 males (SAMA N1987655 N1987671, N199143 - N199165, five - BMNH, five - FMNH, five - NZAC), as holocype.

Fernale: Soma oval, brown, Idiosomal lengta 259 ($\mathrm{n}=25$, Mallee broombush, 249-267), $257(\mathrm{n}=2$, Malloe theath, 256, 258) or 260 ($\mathrm{n}=3$, Sclerophylt forest, 252-267), Leg lengths (fermur-barsus, Mallee broombush, for 262): $1-113$, II-98, III-82, [Y-105, Tiblal maximum heights (for 262): I-16.5, II-43, IT-11.5, IV-13.

Proteronotum with medium breadth rostrum. Integurnent punctate arterior to seta j2; Sublameila mainly obscured in dorsal aspect by laminar lamella. Costate tutorium present. Sensory seta (z2) clavate, caput subequal in length to exposed stalk. Subbothridial flange conspicuous. Posterior margin of bothridium raised to form small single or double toothlike spur. Interlameliar seta (\mathbf{j}) shoster than distance $\int 2-z 1$. Hystemootum without obvious setac anteriorly ($Z, 22, Z 3, Z 4$) but microsetae recognised for $Z 1$ and $Z 2$. whilst posterior small setae ($/ 5, ~ J 6, Z 5, Z 6,55$, S6) present. Integument punctate anterior to pteromorpiss. Foramina with conspicuously refractile saccule, 13 spherical and targer than other saccules.

Idiosternal setac fine and short, variable relative lengths, but $/ \mathrm{h}, \mathrm{ll} / \mathrm{I}, \mathrm{Jg} 3$ always shortest. Integument with indistinct reticulate sculpturing and punctate in coxisternal region. Genital seta JZg 2 closer to JZg 1 than JZg 3 . Dhiscidnum height more than $0.5 \times$ height of pedotectum II, coxite seta IV3 level with, and close to apex. Egg subellipsdidd, exochorion smooth, mean size $132 \times 64(n=13)$. length 49% of somal length, usually one cgg per female ($n=14$), two eggs in single ternale.

Legs shor (median femur-tarsus length: 38% of somal length) with very stout girth (mean maximum tibial height 51% of mean length). Trochanter IV with sharp process on angulate distodorsal margin which extends over fermur IV,
Male: Similar to female but idiosomal sherter, mean lengh, 239 (25, Mailee broombush, 226-252), 249 (5 , Mallee heath. 238-250). 251 (3, Coastal, 250-253) or 247 (3, Scleroptyll forest, 244-252).
Referred material: Three females (SAMA N1987672. N199174, N199175) and five males (SAMA N199176 NB9180), sand, plant litter, under Banksia shrubs (Banksia omata), amongst other sclerophylious shrubs and sparse brown stringybark mallee (Eucalypius
baxteri), Tamboore Homestead ($35^{\circ} 57^{\prime} \mathrm{S}, 140^{\circ} 29^{\prime} \mathrm{E}$), at Mt Rescue Cnaservation Park, 4, xii. 1974.
Three males (SAMA N19977 - N199173), soil, plant litter and sparse grass under coastal wattle (Acacia tophoroe), Piccaninnie Fonds Conservation Park ($38{ }^{\circ} 03^{\prime} \mathrm{S}, 140^{\circ} 57$ 'E), 3vili. 1974.
Three females (SAMA N199166 - N199168), two males (SAMA N199169, N199170), plant littec, sparse moss and sandy soil, under sclerophyllous shrub amongst messmate stringybark (Eucalyphus obliqua), dry sclerophyll forest, near sumnil of Mt Lofty ($34^{\circ} 59{ }^{\prime} \mathrm{S}, 138^{\circ} 45^{\prime} \mathrm{E}$), Cleland Conservation Park, 9 v .1974.
Remarks: The name purciatus is from the Latin for 'dotted' and refers to what may be small pits on anterior parts of the soms, which are more extensive than in othes species, Also $/$ punctatus is unique within the genus in lacking four anterior parrs of fysieronotal setae (microsetae may be present), whilst tic posterior six pairs have small setae, that are relatively long for Incabates. I, pahabaceus Corpus-Raros, 1980 is simillat but without such a clear difference in size between the two groups of setae. Also, on L. pahaboens, the inierlamellar setae are much longer and the hysteronotal slit-shaped pore $h / 3$ is short and not as long as seta J6

Genus Setincabates gen, nûv.

Type-species: Setincabates hypersetosul sp. now,
Definition; Haplozetidae. Hysteronotum whith is pairs ($4 J, 6 Z, 35$) of medium-sizod setose setae. Hysteronotal foramina witt saxcule bag-like, gradoally tapering to pore. Dorsosejugal furrow entire. Translameila, prelamella and tutoriunt ahseni. Rostral seta (j) dircectly in front of lamellar seta (21). Pteromorph movable, with clear weakly sclerolized basal Ine. Discidium triangulate. Tihia I with large solenidium (so2) on tubercle. Tibia II wilhout distodorsal spur. Genu 1 and II with two setac (iv absent). Trochanter IV with distodorsal process extended over femur IV, distodorsal crown with only anterior angulate lohe, broad flange extending along entire venter of caput. Prelarsus witb three claws, slinmer lateral claws with pointed tip.
Distribution: Australia (Aa). Only recoud from Soutt Australia, at site which amongst those sampled has the tioghest rainfall.
Remarks: The name Serincabates has the prefix Ser, an abbreviation of the Latin seta for 'rristie or hair', and refers to the presence of more hysteronotal setae on the single included species than on members of the simalar Incabates and other baplozetine genera with short or medium-sized setae. The haplozetine Flagellobates Mahurka, 1978 with long hysteronotal serae has 14 pnirs of hysterobotal setae. Some other subfamilies included in Haplozetidne by Balogh \& Balogh (1984) hàve similarty numerous hysteronotal
setae, Members of the Peloribatinae, all of which have long hysteronotal setae, have either 14 pairs or, in Acutozetes Balogh, 1970, 13 pairs of hysteronotal setae (possessing six not five setae in file J). The only other haplozetid species with more than 10 pairs of hysteronotal setae are members of the Pilobates Balogh, 1960 (Pilobatinae) with 14 pairs and six pairs of genital setae and a straight, transverse complete ventrosejugal apodeme and one species of Rostrozetes Sellnick, 1925 (Rostrozetinae) with $i 4$ pairs and a short fissure-like pore $h \beta$ similar in length to the hysteronotal foramina. The character states of Setincabates recognised here as distinguishing it from Incabates are probably primitive.

Setincabates hypersetosus sp. nov.

Type material

Types: Holotype female (SAMA N199181), plant litter, sparse moss and sandy soil, under sclerophyllous shrub amongst messmate stringybark (Eucalyptus obliqua), dry sclerophyll forest, near summit of Mt Lofty ($34^{\circ} 59^{\prime} \mathrm{S}, 138^{\circ} 45{ }^{\circ} \mathrm{E}$), Cleland Conservation Park, $9 . v .1974$. Paratypes, 21 females (SAM N199182 Ni99196, two - BMNH, two - FMNH, two NZAC) and 21 males (SAM N199197 - N1991111, two BMNH, two - FMNH, two - NZAC), as holotype.

Female: Soma oval, brown. Idiosomal length 264 (22, 254-275). Leg lengths (femur-tarsus for 267): I-122, II-104, III-86, IV-110. Tibial maximum heights (for 267): I-19, II-13, II-13, IV-14.

Proteronotum with broad rostrum. Integument smooth except for punctuations on gnathosternum between postoral setae. Sublamella mainly obscured in dorsal aspect by laminar lamella. Tutorium not present, although short ridge present around base of rostral setae ($j 1$). Sensory seta ($z 2$) clavate, with long ellipsoidal caput more than twice length of exposed stalk. Sub-bothridial flange conspicuous. Posterior margin of bothridium rounded without tooth-like spur. Interlamellar seta (12) about $\times 2$ distance $j 2-z 1$. Hysteronotum with 14 pairs of small setae ($5 J, 6 Z, 3 S$). Eoramina with small oval refractile saccule without parallel sided duct, all similar in size.

Idiosternal setae fine and short, peripheral setae longet, $Z 2$ and $J Z a 3$ longest. Integument with indistinct teticulate sculpturing in coxisternal region. Genital seta $J \mathrm{Zg} 2$ closer to JZgl than JZg 3 . Discidium height less than $0.5 \times$ height of pedotectum II, coxite seta IV3 near, but posterior to apex. Egg subellipsoidal, exochorion smooth, mean size $132 \times 65(n=4)$, length 49% of somal length, one egg per female.

Legs short (median femur-tarsus length: 40% of somal length) with very short girth (mean maximum tibial height 54% of mean length). Trochanter IV with short sharp process on angulate distodorsal margin which just extends over femur IV.

Male: Similar to fernale but idiosoma shorter, mean length, 239 (21, 244-285).

Remarks; The name hypersetosus is the Latin for 'bristly' or 'setose' with the Greek prefix for 'beyond' or 'over' and refers to the unusually extensive hysteronotal setation compared with members of genera similar to Setincabates.

Fig. 5. Sefincabates hypersetosus gen \& sp. nov., female soma, noturn.

Acknowledgements

I am indebted to Ms C. M. Birchby for the illustrations and to the Australian Biological Resources Study for funding her salary. Thanks are also due to

Dr Henrick Enghoff (Zoological Museum, Copenhagen) for making types available, and Mrs D. Lowery for typing the manuscript.

References

Aokt. J. (1970) Description of Oribatids Mites collected by smoking of trees with insecticides. I. Mt Ishizuchis and Mt Odaigatiara. Bull. natn. Sci. Mus, Tokyo 13, 585-602.
Balogh, J. (1960) Descriptions complementaires doribates (Acari) d'Angola et du Congo Belge. Publ. cult. Co. Diam. Ang. Lishoa 51, 89-105.
(1970) New oribatids (Acari) from New Guinea. II Acta zool. hung. 16, 291-344.
\& Balogh, P, (1984) Review of the Oribatuloidea Thor, 1929 (Acari: Oribatei). Acta zool. hung. 30, 257-313.
Berlese, A. (1908) Elenco di generi e specie nouvi. Redia 5, 1-15.
Coetzer, A. (1968) New Oribatulidae Thor, 1929 (Oribatei, Acari) from South Africa, new combinations and a key to the genera of the family. Mems Inst. Invest. cient. Mocamb., Sér. A. 9, 15-126.
Corpuz-Raros, L. A. (1980) Philippine Oribatei (Acarina) V. Scheloribates Berlese and related genera (Oribatulidae). Kalikasan, Phil. J. Biol. 9, 169-245,
Grandiean, F, (1933) Études sur le development des Oribates. Bull. Soc. zool. Fr. 58, 30-61.
(1936) Observations sur les Oribates (10e serie). Bull. Mus. natn Hist. natur., Paris (2) 8, 246-253.
Hammer, M. (1961) Investigations on the oribatid fauna of the Andes Mountains, Part II. Peru. Biol. Skr. 13, 1-157, 43 pls.
(1967) Investigations on the oribatid fauna of New Zealand, Part II. Bid, 20, 1-70, 40 pls.
(1971) On some oribatids from Viti Levu, the Fiji Islands. Ibid. 16, 1-60, 35 pls.
JACOT, A. P. (1934) Some Hawaiian Oribatoidea (Acarina). Bull. Bernice P. Bishop Mus. 121, 1-99, 16 pls.
LEE, D. C. (1970) The Rhodacaridae (Acari: Mesostigmata); classification, external morphology and distribution of genera, Rec. S. Aust. Mus. 16, 1-219.
(1987) Introductory study of advanced oribate mites (Acarida: Cryptostigmata: Planofissurae) and a redescription of the only valid species of Constrictobates (Oripodoidea). Ibid. 16, 35-42.
\& SHEPHERD, K. J. (1990) Magnobates (Acarida: Cryptostigmata: Haplozetidae) from South Australian soils. Trans. R. Soc. S. Aust. 114, 179-186.
Luxton. M. (1985) Cryptostigmata (Arachnida: Acari) - a concise review. Fumna N. Z. 7, 1-106.
Mahunka. S. (1978) Neue und interessante Milben aus dem Genfer Museum XXXIV. A compendium of the Oribatid (Acari) Fauna of Mauritius, Renunion and the Scychelles Is. II. Revue suisse Zool. 90, 709-724.
(1984) Oribatids of the Eastern Part of the Ethiopian Region (Acari). V. Acta zool. hung. 30, 87-136.
WILLMANN. C, (1935) Faunistisch-ökologische Untersuchungen im Anningergebiet IV. Die Milbenfauna. I, Oribatei. Zool. Jb. Syst. 66, 331-344.

Biodiversity Heritage Library

1993. "Incabates Hammer and Setincabates gen. nov. (Acarida:

Cryptostigmata: Haplozetidae) from South Australian soils." Transactions of the Royal Society of South Australia, Incorporated 117, 77-85.

View This Item Online: https://www.biodiversitylibrary.org/item/128619
Permalink: https://www.biodiversitylibrary.org/partpdf/81307

Holding Institution

South Australian Museum

Sponsored by

Atlas of Living Australia

Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder. License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: F South Australian Muscum, North Tertace, Adelaide, S. Aust. 5000 .

