A NEW SPECIES OF URACANTHUS (COLEOPTEKA: CERAMBYCIDAE): A PEST ON ORNAMENTAL CYPRESSES IN THE ADELAIDE REGIOX

by S. A. RONDONLWUA \& A. D. AUSTIN*

Abstract

Summary Ronobsewv, S. A. \& Ausiv, A. D. (1988) A tuew species ol Uracanthus (Coleoplera: Corambycidae): a pest on ornamentel cypresses in the Adelaide Region. Trans. R. Soc. S. ALust. 112(00)), 109 117, 30 Novemben, 1988.

A new species of cerambycid beelle from South Ausiralia is described, based on both sexes of Ote aduth and all immature siages. Uiracanthus cupressianus sp, nov. causes damage to cypresses, Cippressus spp., plamicd as ornamental trees in park, and gardens around Adelaide. Notes wn Urocanhims are prisvided. and the relationships and biology of U, cupressianus sp, now. are discussed.

Introduction

In Australia the Family Cerambyeidac is represented by almost 1000 described species (McKeown 1947), matiy of which have been fecorded as causing damage to native trees grown fir umber, wind-breaks of as ornamentals. However, the laxonomy of the famity in his country has received virtually no attention in the last 30 years, even theugh the group is of significant importance to the ecology of "rees and shrubs in natural habitats and in commercial situations (Linsley 1959).

Recently one of us (SAR) completed an extensive project on the biology and ccology of a species of Urocanthus which catuses subsiantial damage to ornamental cypresses, particularly Cupressus sempervirens L. (Cupressaceae) in the Adelaide region. The members of this Australian genus were described prior to 1950 and are dealt with in the works of Lea (1916, 1917), McKeown (1938, 1940. 1942, 1947, 1948) and Dulfy (1963). The only key to speeies is that presented in Lea (1916), which covers 22 of the 37 known species. In this work our species runs to either U. acutus Blackburn or U, discicollis Iea, but is quite different from these species in a number of characters (see below). To ensure that we had an undescribed species we burrowed all available holotypes, and examined the Urocanthus holdings in the South Australian Muscum, Australian National Insect Collection and the Waite Instifute Insect Collection (see Table 1). Our comparisons using this material showed that the species we had reared from branches of C. sempervirens in the Adelaide region was substantially different in many important characters

[^0]In all other spectes and, atecordingly, should be considered as new.

In this paper we describe the species, discuss its intrageneric relationships, and provide briel noles on its biology. A detailed account of the ecology, behaviour and inferaction wift the main host tree will be presented elsewhere. Although we examined other species in the genus (Table 1), we cannot provide a comprehensive key because of unresolved intraspecific variability in soine taxa. However, we indicate where these problems lie and whal characters may prove useful in resalving then.

Melhods

Larval stages were obtained from infested twigs of C. sempervirens collected from Adelaide stoburbs during 1986. They were either lixed and preserved in 80% alcohol or reared through to adults in the lahoratory. Male genitalia and cuticular structures from larvac were dissected out, soaked in $10 \% \mathrm{KOH}$ (4-6 hrs), placed in 10% acetic acid (15 mins), dehydrated, and either permanently mounted on slides in Berlese's fluid or temporarily mounted in glycerot. Adull reproductive systems were drawn from freshly killed specimens dissected under Ringer's solution. Descriptions of the larval stages were compiled from freshly killed specimens examined under $8(0 \%$ alcohol, except for sculpturing and pilosity characters which were examined by firstly drying specimens on filter paper.

The morphological terms used follow Duffy (1953, 1957, 1960, 1963), Torre-Bueno (1962), Eady (I968) and Harris (1974). Abbreviations For institutions ăre: ANIC, Australian National Insect Collection, CStRO, Canberra: AM, Australian Museum, Sydney; BMNH, Brilish Museum (Natural History), London; MV, Museum of Victoria, Melbourne; NRS, Natural Hisiory Muscum, Stockholm; SAM, South Ausiratian Muscum, Adelaide, HMO, Hope Museum, Dxford;

WAM, Western Australian Museum, Perth; WARI, Waite Agricultural Research Institute, Adelaide.

Genus Uracanthus Hope

A complets bibliography to the genus is provided by McKeown (1947).

Comments

The Australiam Uracanthini is in urgent need of revision. There are seven genera, none of which is well charatterized: the most recent works by Lea, MeKcown only provide deseriptions of new species. A key to some genera is given by Les (1916) and a more extensive generic key is presented by Randonuwu (1988°). Uracanthus is closest to Scolecnbrothus Hope, differing ortly in the latter having 12 -segmented antennae, segments 11 and 12 fully articulated, and the distal nine segments dentale or serrate along one side. In Uracanthus the antennae are 11 -segmented. Segment 11 is somelimes divided by a sulure but the two parts are never articulated, and the distal nine segments are cylindrical or subcylindrical.

We found a number of characters to be more variable than indicated in Lea's and McKeown's work, undoubtedly because they based their species' descriptions on very few specimens. Shape of elytral apices, surtace sculpluring, pilosity and body size varied in many species and, although these characters will rumain important in delimiting species, their range of variation will need to be documented in any future revisionary work, Characters we found useful at the species level were the siructure of the male genitalia, the proximity of the eyes on the ventral head and ibe shape and length of the amtennae, Such characters may help resolve the problem surrounding the U, triangularis Hope complex, which includes three varieties (Var: A, B and C) designated by Lea (1916) on the hasis of differences in pilosity.

Fot nearly all known species of Uracunthus only descriptions of the adule stage are given, usually of the male. Duffy (1963) is the only author who hies provided any intormation on immature stages, and then only for the final instar larva of three species, viz. U triangularis, U. cryptophagus Olliff. and U. pallens Hope. We present here a description of all life-history stages for the new species and have used Dufty (1953, 1957, 1960, 1963) as a guide in trying to limit the description of non-adult stages to characters of specific value only.

[^1]
Uracan/hus cupressianus 5p. nov.

 FIGS 1-20Holorype: σ. SAM, Glenclg, South Aisiralis, reared ex Cupressus sempervinens, 5.x.1986, \& Rondonuwb. Paratypes: adults - 27 $\sigma, 26$ है, genitalia of 5 in glycerinc capsules, same data as holotype except for some with different collecting dates; 300,3 , SAM: $21 \circ, 209,5$ of genitalia preparations, WARI; $3 \propto, 3 \circ$, ANIC.

Adult Male

Size (holotype). length 13.8 mm , width across anterior part of elytra 3.1 mm (also see Table 2).

Cofour. Generally reddish brown; head, proximal antennal segments, pronotum and femora usually darker ihan elytra; almost cotire body covered with dense-swen pilosity of short hairs giving golden sheen appearance over surface.

Head. Lower face (from kower eye to tip of closed mandibles) about as long as wide, lateral margins converging ventrally only slightly; clypeus llat or slightly convex, sparscly punctate, sparsely pilose. dorsal margin triangular, bounded by deep sulures; medial impressed line deep and glabrous, extending postcriorly to point just behind cyes; antental sockels raised well above surface of fruns on high cone-like protuberances which are modcrately narrow at apex; frors and dorsal parts of genae coarsely punctate but punctures mostly hidden by pilosity; lateral and ventral part of head mostly glabrous; lateral part sparsely punctate, ventral headpari with very coarse transverse striae; ejes coarsely facetted, broadly scparated in veniral aspect by about hatf width of head (measured teross posterior margin); antennac (Fig. 1) shorter Ihan body. I1-scgmented, sumelimes segment II divided by feeble suture (i.e, appcaring 2 -segmented), segments 3 -11 cxtremcly narrow and elongate, eventy cylindrical, apex of segments 5-10 produced only slightly on outer side.

Thorax. Pronotum (Fig. 9) longet thatn width actoss posterior margin (5.0:4.3), posterior margin wider thafi anterior macgin $(4,3 ; 3.3)$ so that in dorsat view lateral margins converge anteriorly; lateral pronotum with broadly pointed hump just poslecior to midline; pronotum with two very broad longitudinal bands of dense pilosity dorsally and narrower piluse band above coxae dorsomedial longirudinal line narrow to moderately broad and glabrous, lateral surface mosily glabrous, ventral surface sparsely and evenly pilose, docsal and lateral part of pronotum with uneven transverse strigosepanctate sculpuring, mostly hidden by pilosity;

Table 1: Species of Uracanthus known from Australia (* $=$ holotype examined; $\mathrm{x}=$ holotype missing; $+=$ species known from South Australia)

Species	Holotype \& depository	Depositories of other material examined
Uracanthus acutus Blackturn (*)	or BMNH	SAM, ANIC, WARI
U. albatus Lea (*)	O SAM	WARI, SAM
U. ater Lea (*)	or SAM	SAM, ANIC
U. bivitta Newman (*, +)	c. BMNH	SAM, ANIC, WARI
U, corrugicollis Lea ($*$, +)	\square SAM	SAM, ANIC
U cryptophagus Ollif. (*)	\% AM	SAM, ANIC
U, cupressianus sp.nov, ($4,+$)	\bigcirc SAM	ANIC, WARI
U. dentiapicalis McKeown (*)	O WAM	
U. discicollis Lea (${ }^{*},+$)	of SAM	SAM, ANIC, WARI
U. dubius Lea ($*, t$)	of SAM	SAM, ANIC
U. froggatii Blackburn (*)	Of BMNH	SAM, ANIC
U. fuscocinereus White (*)	\% BMNH	WARI, ANIC
U. fuscostriatus McKeown (*)	O WAM	ANIC
U. fuscus Lea (${ }^{+}+$)	[) SAM	SAM, ANIC
U gigas Lea (x)	c BMNH	SAM, ANIC
U. glabrilineatus Lea	σ SAM	SAM
U. inermis Aurivillius (*)	9 NRS	-
U. insignis Lea (*)	8 SAM	SAM, ANIC
U. lateroulbus Lea (*)	- SAM	SAM, ANIC
U. leai McKeown (*)	\bigcirc SAM	SAM
U. Iongicornis Lea (*)	or SAM	SAM
U. Ioranthi Lea (*)	* MV	SAM, ANIC
U. maleficus Lea (*)	\sim SAM	SAM, ANIC
U, marginellus Hope ($*,+$)	of HMO	SAM, ANIC
U. minarus Pascoc (*)	\& BMNH	-
U. multilineatus McKeown (*)	\bigcirc WAM	ANIC
U. pallens Hope (*)	of HMO	SAM, ANIC
U. paratlelus Lea (*)	\bigcirc	ANIC
U. parvus lea (*)	or SAM	ANIC
U. pertenuis Lea (${ }^{*},+$)	or SAM	SAM, ANIC
U, regatis McKeown (')	\sim AM	ANIC
U, simulans Pascoe (${ }^{+},+$)	\square BMNH	SAM, ANIC
U. strigosus Pascoe (*)	of BMNH	SAM, ANIC
U. Suturalis Lea	\bigcirc SAM	SAM, ANIC
U. triangularis Hope	Q HMO	SAM, ANIC, WARI
U. triangularis var. A Lea (*)	\sim SAM	SAM, ANIC
U. triangularis var. B Lea (${ }^{*}$, +)	\square SAM	SAM, ANIC
U. triangularis var. C. Lea (*, +)	\bigcirc SAM	SAM, ANIC
U. ropicus Lca (*)	$\bigcirc{ }^{\circ} \mathrm{SAM}$	SAM, ANIC
U, ventralis 1.ea (*)	O. SAM	SAM, ANIC

dorsal part of pronotum with one pair (sometimes two pairs) of small shallow glabrous depressions, dorsomedial longitudinal line slightly depressed; scutellum pointed posteriorly, smooth, virtually glabrous.

Elytra. Much wider than prothorax measured across anterior margin, width decreasing posteriorly; apices broadly pointed either symmetrically or asymmetrically (Figs 4, 5); anterior cornets glabrous; surface of each elytron with four feeble raised longitudinal lines (Fig. 1), punctate all over but punctures partly hidden by dense even pilosity.

Legs. Moderately stout; femora expanded in distal two-thirds, widest approximately one-third from distal end, lateral surfaces transversely strigosepunctate and almost without pilosity; tibiae slightly
bowed, hind tibiae more so than fore and mid tibiae; first segment of hind tarsus 1.54-1.56 times longer than sccond; first segment of fore and mid tarsi 1.5 times or less longer than second.

Abdomen. Ventral surface with uniform pilosity, moderately dense; $\$ 7$ broadly truncate posteriorly, sometimes slightly emarginate medially; T7 broadly rounded posteriorly and slightly emarginate medially; T8 (if visible) much narrower than T7 and deeply emarginate medially (Fig, 6).

Genitalia and Reproductive System. Genitalia (Fig.

 7) with lateral lobes of tegmen cylindrical, apices rounded with several short and several long setae; basal piece thin and folded but becoming flat and wider at tip; median lobe parallel-sided, becoming narrower at apex; lateral margin of median orifice

FIGS 1-7. Uracanthus cupressianus sp. nov, 1, adult male paraiype; 2 and 3, adult female, paratypes, variation in the apices of the clytra; 4 and 5 , adull male, paratypes, variation in the apices of the elytra; 6 , adult male, paratype, distal segments of the abdomen, ventral view: 7, adut male genitalia (aedeagus), paratype. Scales: Fig. $1-2 \mathrm{~mm}$; Figs 2-6 - 0.5 mm ; Fig. $7-250 \mathrm{\mu m}$. bs - basal strul; $11=$ lateral lobe; $\mathrm{ml}-$ medial iohc; $\mathrm{mo}=$ medial orifice; 1 tegmen.
narrowed apically, rounded, slightly notched medially; dorsal lobe as wide as ventral lobe; basal struts shori and truncate anteriorly; internal sac with a knot behind aedcagus; arrangement of glands and ducts as in Fig. 8.

Adult Female

As for male excepl as follows:
Size. (see Table 2); pronotum slightly broader in posterior half, with broader more diffuse glabrous
medial longitudinal line; elytra slightly more parallel-sided, apices cither symmetrical or asymmetrical (Figs 2, 3); terminal segments of abdomen with long golden hairs, T8 retracted into the genital chamber; ovipositor very short, bearing pair of styli at distal edge; sfyli bearing $2-4$ long fine hairs interspersed with short tactile hairs; coxites medially and dorsolaterally bearing 6.8 long hairs interspersed with short tactile hairs; structure of distal reproductive system as in Fig. 10.

FIGS 8-14. Uracanthus cupressianus sp. nov, 8, adul1 male reproductive system; 9, adult male, paratype, dorsal pronotum; 10, adulr female, ovipositor and distal portion of the reproductive system showing an egg in the common oviduct; 11, laryal instar 1, paratype, antenna; 12, larval instar VII, pararype, antenna; 13, larval instar VII, paratype, abdominal spiracle; 14, larval instar VII, pararype, pronotum. Scales: Figs 8 and $10=0.5 \mathrm{~mm}$; Fig. $9=1 \mathrm{~mm}$; Fig. $11=25 \mu \mathrm{~m}$; Fig. $12-50 \mu \mathrm{~m}$; Fig. $13-250 \mu \mathrm{~m}$; Fig. $14=0.5 \mathrm{~mm}$. ad $=$ aedeagus; ag - accessory gland; bc bursa copulatrix; e - coxite; co = common oviduct; ed $=$ ejoculator duct; $s p=$ spermatheca; st - stylus; $\mathrm{te}=t \mathrm{esti} ; \mathrm{s}=$ supplementary process.

Immature Stages

Igg: length 1.5 mm width 0.6 mm ; ovoid with one end slightly tapering and bearing a group of spicules, opposite end strongly tapering, truncate, with spicules that are roundly inclined; chorion light to dark grey and coarsely reticulale.

Larval Instar I: Length (Table 2); antennae hyaline, segment 3 with 1 distal peg and larger supplementary process (Fig. 11); mandibles and pronotum not strongly sclerotized, spiracles very small; abdominal segment 10 without caudal process and bearing few fine hyaline setae (Fig. 20).

Table 2. Size of various life-history stages of Uracanthus cuptessianus sp. nov. For stages LI to Pupa the width was measured across the pronotum ond for adults it was measured across the sidest part of the elytra.

STAGE	LENGIH (mm)			WIDTH (mm)			
	${ }_{x}$	S.D.	RANGE	\bar{x}	S.D.	RANGE	n
41	2.46	0.24	2.1-2.6	0.61	0.03	0.5-0.7	26
I.II	3.36	0.55	2,2-3,8	0.66	0.22	0.6-0.8	10
1.11	5.60	1.66	4.3-8.6	0.89	0.26	0.7-1.2	25
LIV	10.49	1.92	7.8 15.2	1.52	0.28	1,2-2,2	25
LY	13.74	1.44	10.3-16.0	1.98	0.16	1.8-2.5	25
IVI	18.73	2.10	15.5-22.2	2.44	0.27	2.1-3.01	25
LVIt	23.16	2.66	19.031 .0	3.27	0.42	2,7-4,4	25
Prepupa	13.44	4.74	12.0-20.0	3.27	0.56	2.5-3.9	25
Pupa	16.83	1.44	13.5-19.0	2.42	0.16	2.2-2.7	15
Adult of	14.86	0.93	12.5-16.6	2.89	0.23	2.5-3.1	28
Adult ?	17.65	1.42	14.4-19,6	3.54	0.44	2.7-4.7	26

Larval Instars It-1V; length (Table 2); similar to instar I but differing in being progressively larger and more sclerotized and developing 3 small caudal tubercles on segment 10 (Fig. 19) which progressively become more sclerotized.

Larval Instars V and VI: Length (Table 2); generally similar to instar VII but smaller and with some of the morphological characters described for instar VII being difficult to see, particularly for instar V.

Larval Instar VII: Size (see Table 2); body elongate and subcylindrical, yellow to white in colour; pronotum with brown and pink patches; mouth bright red-brown; mandibles dark red-brown.
Head. Virtually parallel-sided; epistoma indistinct. with four epistomal setae; frons coarscly punctate, weakly sclerotized, bearing about 12 setae; median suture well defined, frontal suture indistinct; hypostoma strigatc, bearing 5 long sctac anteriorly mear gular sutures; gular sufures raised and curved; gular region raised, hairless and weakly sclerotized; antennal segments strongly sclerotized, segments 2 and 3 bearing pegs, segment 3 with larger supplementary process (Fig. 12): clypeus anembranous, trapezoidal, narrow, hairless; labrum circular and fringed anteriorly with long thick setae; mandibles short and stout, upper corner turned inwards and pointed, inner surlace concave, outer surface with two long sctac basally (Fig, 17).

Prothorux: Pronotum oval (Fig. 14), sometimes subrectangular, only slightly wider than posterior segments if at all, well selerotized, posteromedial plate fitrely longitudinally striate with associated pigmented punctures, sparsely setose or glabrous, anterior half and lateral margins with long setac; prosternum sparsely seiose, coarsely punctate, lightly scterotized; eusternum semicircular, sparsely
setose, fincly punctate, sternellum very sparsely setose, with 610 fine setae.

Meso- and Metathorax: Mesotergum bearing xshaped suture; metatergum with irregular suture; both these tergites with long reddish-brown setae laterally; mesostcrnum and metastemum bearing irregular transverse furrow.

Legs: Small; coxa strongly transverse; trochanter narrower with one long seta: femur as wide as trochanter, with three setae; tibjotarsus broad but narrower and longer than femur, with 3-4 setac; unguiculus not particularly elongate, about as long as libiotarsus (Fig, 18).

Abdomen; First two dorsal ampullac bearing 4-5 transverse impressions delimited by one pair of laleral furrows and a median longitudinal furrow, remaining ampullac with indistinct tranverse impression; first four ampullae densely setose lalerally, remaining three very sparsely setose; first five ventral ampullac with just one tranverse impression, last two ampullae with $2-3$ impressions; first four epipleura not protuberant, bearing roundish pleural disc, 5th-7th epipleura slightly protuberanl, each with single thick long seta and a few fine sctac; 8th epiplcuron not proruberant, with small round pleural dixc; 9 (h epipleuron rounded postcriorly with numerous long thick reddish-brown setae: (ermunal segment (segment 10) usually bearing three short well sclerotized processes above anus, cach process bearing a few shert setae, (Figs. 15, 16), sometimes with additional smaller lateral processes, or with main lateral processes wanting so only one large medial process is present: spiracles complex (Fig, 13), well sclerotizeds red-brown.

FIGS 15-20. Uracanthus cupressianus sp. nov. 15, larval instar VII, paratype, distal segments of the abdomen, lateral view; 16, larval instar VII, paratype, distal segments of the abdomen, posteroventral view; 17, Jarval instar VII, paratype, mandible; 18, larval instar VII, paratype, metathoracic leg; 19, larval instar 11, paratype, distal segments of the abdomen, posteroventral view; 20, larval instar 1, paratype, distal segments of the abdomen, posteroventral vicw, Scales: Figs 15 and $16=0,5 \mathrm{~mm}$; Fig $17=200 \mu \mathrm{~m}$; Figs $18-20=100 \mu \mathrm{~m}$ (same scale for Figs 19 and 20).

Sexual dimorphism: Dissected male instar VII larvae differ from lemales by having two prominent reddish-yellow testicular follicles located ventrolaterally in abdominal segment 5 . They can
also be distinguished by having stouter and larger mouth parts. The ovaries in the females are hard to distinguish but can sometimes be seen as threadlike diffuse structures embedded in fat bodies.

Prepupa; There is a progressive contraction of the body during the prepupal period, which is initiated soun afler larval instar VII has stopped feeding. The segmentation is very distinctive due to deep intersegmental infolds, which develop as a result of this consraction. The body colour changes to dull white or yellow, it becomes shorter (see Table 2), the Ithorax becomer thicker and the head turns ventralty. Numerous fat bodies are visible through the semiIransparent body wall.

Pupa: Size (Table 2); morphology generally the same as thar described for other Cerambycinat (Duffy 1953): apparently with fow unique distinguishing characteristics.

Other material examined: Immature stages - large number of eggs. larval instars I-VII and pupac, same data as adult paratypes, stored in 70% alcoliol, WARI.

Comments

The adult of Uracanthus cupressianus is distinct from all described congeners. In gencral appearance it is most similar to U. acutus but differs from this species in the pronotum being more transversely singate and pilose dorsally, the apices of clytra being less aculely pointed, and the elyirs having four fecble longitudinal lines. U, acutus tas the pronotum almost hairless and only weakly transversely strigate, the apices of the elytra acutely spinose, and the surface of elytra coarsely punctate and lacking longitudinal tincs.
U. cupressiunus also beary a superticial tesemblance to Ul. tongicornis Lea, U. Ioranthi Lea and U. discicollis Lea, but these species differ in several important characters. U. longicornis has the eycs almust touching ventrally, the pronetum very strongly transversely strigate and uneventy pilose, The antennae more robust and longer than the body, and the apices of the elytra narrowly rounded with an inner acute spine. U. lorahth i has the pronotum irregularly transtersely strigate-nodulate, with four longitudinal pilose bands dorsally, and the apiees of the elytra broadly and diagonally truncate. U. discicollis has the surface of the pronotum completely smooth with much longer pilosity, the antennae longer than the body, and the elytra with dense inner longitudinal bands of dense long pilusity, but lacking longitudinal raised lines.

Or the three species of Uracanthus for which the final instar larva is known (Duffy 1963), U. cupressianus is most similar to U. pallens. paticularly in the shape and arrangement of the nötleriar abdominal processec. These species differ, however, in the shape and pilosity of the pronotum,
while the other two species, U. iriangularis and U. aryoophagous, differ from U. cupressianus in having smaller sonttilobed posterior abdominal processes.

Biology

U. cupressianus causes substantial damage to branches of introduced cypresses, Cupressus spp., parlicularly C, semperyirens, which are planted as ornamental trees in parks and gardens throughout the Adelaide region and in Sunth Australian comntry towns. This insect also may be responsible for the sporadic damage seen on cypresses in Victoria and New South Wales, The laryal slages tunnel up and dewn branches, quickly turning them brown and killing thern. In some Adelaide suburbs up to 70% of all trees are damaged by the feeding activity of the larvae. The native host trees of U. cupressianus are thought to be Collitris spp. (Cupressaccac).
Adult beetes smerge in sping, mate and females lay eggs soon after at night on the bark of trees. The first instar larvac burrow into the sapwood and begin leeding and tunnelling. The larvae continue to grow and moult, with each branch usually aceommodating only one larva. Small hoies to the outside are occasionally produced to allow for the ejection of frass and possibly for the aeration of tumnels. Final instar laryac construct a chamber at onc end of the main funnel where pupation occurs. The life cycle of most individuals is biennial and includes a larval-pupal diapause, although some individuals take as little as one year to complete their development. The larya ($\mathrm{IIt}-\mathrm{V}$) of U. cupvessionus is parasitized by a braconid wasp (Helconinae: Cencevelini, genus and species indet.) and is preyed upon by a clerid beetle (recorded only in the larval stage), but these species never cause much mortality. The physiological condirion of the host tree is probably a more imporlant factor in regulating population numbers. a phenomenon which will be disenwed in detail by one of us (SAK) at a later date.

Acknowiedgments

We thank Dr Eric Marthews (SAM), Dr Terry Housion (WAM), Mr Ken Walker (MIV). Mi Geoff Holloway (AM), Mr Chris OToole (HMO), Mr Les Jesop (BMNH) and Dr Per Lindskog (NRS) for loan of type material; Mr Raul Dangerfield for drawing the figures, and Drs Roger I anghlin and Jemny Gardner for reading drafts of the manuscript. This work was supported by a Colombo Plan Award from the Australian Governnent to SAR.

References

DuFFy, E. A. J. (1953) "A Monograph of the Immature Stages of British and Importcd Timber Beetles (Cerambycidae)". (British Museum (Natural History), London).
(1957) "A Monograph of the Immature Stages of African Timber Beetles (Cerambycidae)". (British Museum (Natural History), London).
(1960) "A Monograph of the Immature Stages of Ncotropical Timber Beetles (Cerambycidae)". (British Muscum (Natural History), London).

- (1963) "A Monograph of the Immature Stages of Australasian Timber Beetles (Cerambycidae)". (British Museum (Natural History), London).
Earsy, R. D. (1968) Some illustrations of microsculpture in the Hymenoptera. Proc. R. ent. Soc. Lond. (A) 43, 66-72.
Harris, R. A. (1979) A glossary of surface sculpturing. Calif. Dep. Food Agric. Bur. Ent. Occas. Papers. 28, 1-31.

LEA, A. M. (1916) Notes on some miscellaneous Coleoptera, with descriptions of new species. Part II. Trans. R. Soc. S. Aust. 40, 272-436.
(1917) Descriptions of new species of Coleoptera. Part XII. Proc. Linn. Soc. N.S.W. 41 (1916), 720-745,
LINSLEy, E. G. (1959) Ecology of Cerambycidae. Ann. Rev. Ent. 4, 99-138.
Mc.Keown, K. C. (1938) Notes on Australian Cerambycidae IV. Rec. Aust. Mus. 20, 200-216.
(1940) Notes on Australian Cerambycidae V. Ibid. 20, 293-312.
(1942) Australian Cerambycidae. VI. Descriptions of new species mostly from Queensland. Ibid. 21, 81-105.
(1947) Cataloguc of the Cerambycidae (Coleoptera) of Australia. Mem. Aust. Mus. 10, 1-190.
(1948) Australian Cerambycidae VIII. Notes on a collection from the Western Australian Museum, with descriptions of new species. Rec. Aust. Mus. 22, 49-63.
Torrf-Bueno, J. R. De La (1978) "A Giossary of Entomology". (New York Entomological Society, New York).

NEW ROTIFERS (ROTIFERA) FROM TASMANIA

by W. Koste ${ }^{*}$, R. J. ShiEL ${ }^{+}$\& L. W. TAN ${ }^{++}$

Abstract

\section*{Summary}

One hundred Tasmanian aquatic habitats were surveyed for Rotifera in spring 1987. Of 168 taxa identified, 59 were first records for Tasmania, 21 new to Australia and four (Trichotria buchneri sp. nov., T. pseudocurta sp. nov., Lecane herzigi sp. nov. and Notommata tyieri sp. nov.) new to science. New taxa are described and figured, several of the new records also are figured, and brief ecological information is given. KEY WORDS: Rotifera, new species, new records, Tasmania, zoogeography.

Biodiversity Heritage Library

Rondonuwu, S A and Austin, A. D. 1988. "A NEW SPECIES OF URACANTHUS COLEOPTERA CERAMBYCIDAE A PEST ON ORNAMENTAL CYPRESSES IN THE ADELAIDE REGION SOUTH AUSTRALIA." Transactions of the Royal Society of South Australia, Incorporated 112, 109-118.

View This Item Online: https://www.biodiversitylibrary.org/item/128037
Permalink: https://www.biodiversitylibrary.org/partpdf/79418

Holding Institution

South Australian Museum

Sponsored by

Atlas of Living Australia

Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder. License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: + Depariment of Entomology, Waite Agricultural Research Institute, University of Adelaide, Gilen Osmond, S. Aust 5064.

 Present Address: Faculias Pertain, Universitas Sam Ratulangi, Manodo, Sulawesi Uiara, Indonessa,

[^1]: ${ }^{\text {LKondonuwu }}$ S. A. (1988) "Biology and Ecology of Cypress Tiviz Borer, Uraranthus rupirestana sp, $\boldsymbol{o}_{\text {, }}$
 SI Adelade.

