EARIHWORMS (OLIGOCHAETA: MEGASCOLECIDAE) FROM SOUTH AUSTRALIA

by B. G. M. Jamteson*

Abstract

Summary Jamitson. B. G. M. (1974).-Earthworms (Oligochacta: Megascolecidac) from South Australid, Trans, K. Soc. S. Aust. 98 (2), 79-112, 31 May, 1974. The Megascolccidae is the only family of earthworms indigenous in South Australia, The megascolecid fauna of the state is impoverished, though specific endemicity is high, consisting of five genera- with thirteen species. These are the circum-mundane Microscolex dubius (Fletcher, 1888a); the new endemic species Perionychella (P.) inconstans. Spenceriella itnparirystis, S. penolaensis, Gemascolex bursatus, G. mirabilis, G. octothecatus, G. similis, and G. walkeri spp. nov.; the previously known endemic species G. newmani Edmonds \& Jamieson, 1973, and G. stirlingi (Fletcher, 1888a); and two species known also from Victoria, G. lateralis (Spencer, 1892; syn. Megascolex zeitzi Michaelsen, 1907b) and Heteroporodvilus shephardi (Spencer, 1900). the latter being represented by the new subspecies H. shephardi armatus. In sharing its four indigenous genera and two of its species with Victoria, South Australia shows close zoogeographic affinities with this state whereas affinities with Western Austratia are minimal, consisting only of a close relationship between Perionychella and the Western Australian genus Graliophilus. The paucity of the fauna is attributed to the Jow rainfall and it is noted that tet of South Australia's thirteen species have excretory adaptations, in the form of intestinal enteronephry, which favour water conservation.

Introduction

Three indigenous species of earthworms (Family Megascolecidae) have previously been recorded from South Australia. All were assigned to a single genus, Gumascolex by Edmonds \& Jamieson (1973). The three species are G, stirlingi (Fletcher, 1888a) of which Megascolex fletcheri Shannon (1920) is a junior synonym; G. zietzi (Michaelsen 1907b) which (see below) is a junior synonym of G, lateralis (Spencer, 1892); and G. newmani Edmonds \& Jamieson, the type-species of Gemascolex. The only other megascolecid carthworm previously fecorded from the state is Microscolex dubius (Fletcher, 1888a), for which Adelaide is a type-locality. This species is curyhaline and is circum-mundane in warmer, though not tropical., regions. Its centre of origin is unknown.

The only other earthworms from South Australia belong to the holaretic family Lumbrieidae, This non-indigenous family is beyond the scope of this work. It is nevertheless of interest to note localities from which lumbri-
cids were obtained in the present survey and these are included in the map (Fig. 1).

With the assistance of Mr. T. Walker, the :uthor collected earthworms in August 1972, after favourable rains, from 26 localities (see Fig. 1), from Mt. Remarkable in the north to the Fleurieu Peninsula in the south. Collecting yielded twelve species of Megascolecidae, including the three previously described Gemascolex spp. and Microscolex dubias. A further species, collected by Mr. Ifor Thomas from Kangaroo Island, brings the lotal of known megascolecid species from the state to 13. No collection was done on Yorke and Eyre Peninsulas in the west, nor in much of the wetter south-eastern portion of the state, and it seems likely that further species will be found in those areas. It is hoped that this study will stimulate others to make the further collections necessary to yield a definitive checklist of South Australian earthworms.

Systematics

The megascolecid species of South Australia fall into the subfamilies Acanthodrilinae, rep-

[^0]

Fig. 1. Map showing all known records of earthworms from South Australia. White circle, Megascolecidae only. Black and white circle, Megascolecidac and Lumbricidae. Black circle, Lumbricidae only.
resemed by the tribe Acanthodritini, and Megascolecinae, represented by the tribes Personychini and Megascolecini sensu Jamieson, 1971a. The sub-families and tribes are sel out in this order in the present accoupt and the species are listed in alphabetical order ander their genera within each tribe. Abbreviations for institutions in which specimens have been lodged are: AM (Australian Museum, Sydney), BJ (Author's collections), BM (British Museum (Natural History)) and SAM (South Australian Museum). The major collectors. B. G. M. Jamieson and T. Walker, are indicated by the jinitials B.I. and T.W, respectively. The abbreviation H signifies holotype and P paratype. Explanations of rerminology used in descriptions may be found in Michaelsen (1900). Stephenson (1930) and (nephridia) in Jamicson (1971a).

A key to the Megascolecidae of South Australia follows. To permit ready identification, without recessitating detailed study of the excretory system which is the basis for tribal classification, tribes have been omitted and the key proceeds directly to species. As unknown species may be cncountered by collectors, agreement with illustrations cited in the key is
required, and the detailed descriptions should be checked to confirm identification.

Family MEGASCOLECLDAE

Subfamily ACANTHODRILINAE s. Jamicson, 1971a

Tribe achnthouritine s, Jamieson, 1971a
Holonephric, or, if wholly or partly meronepbric, with a single pair of prostates. Prostates tubular, one to three pairs. Stomate meronephridia, where present, not forming a series median to astomate micromeronephridia.

Genus MICROSCOLEX Rosa, 1887
Microscolex dubins (Fletcher, 1888a), Rosa, 1890: 511. Michaelsen, 1907a: 146-148: 1907b; 5. Pickford, 1937: 429-432, figs 398-399. Gates, 1962: 7-15.

FIGS 2A, 12: TABLE 1

Eudrilus (?) dubius Fletcher, 1888a; 378-381,
Length $=36 \mathrm{~mm}, \mathrm{w}$ (midelitellar) $=3.4$ $\mathrm{mm}, \mathrm{s}-88$ (specimen 1). Circular in cross section. Pigmentless in alcohol, Prostomium not canaliculate, cpilobous $1 / 2$, closed. Peristomium not bisected ventrally. Dorsal pores absent. Setae 8 per segment, commencing int II, in regular longitudinal rows throughout. Setae a and h absent in XVII.

Key to the megascolecid species of South Australia

1. Combined male and prostalic pores a pair on XVII (16th setizerous segment), Spermatheral pores absent
2. Combined male and prostatic pores a pair on XVIII (17th setigerous segment). Spermathecal pores present $\frac{2}{3}$
3. Nephrialia one pair per segment 3
4
4. Nephridia with terminal bladders which siternate from lateral to ventral
5. Caloiferons glands present on the oesophagus, paired in X, XT-XIII s
6. Culciferous glands absent 6
5 Calciferous giands 4 pairs, in X-XIII. Spermathecue unpaired Spenceriella Imparicyswix. Fip. 9A
7. Calciferous glands 3 pairs, in XT-XIII. Spermathecae patred Spenceriella penotoensis, Fig. 9B6. Spermathecal pores 1 pair. in $5 / 6$.Gemascolex walkeri, Fig. 7A
8. Spermathecal pores more than 1 pait, in $7 / 8$ or $8 / 9$ anteriorly 7 A
7
9. Spermathecal pores 2 pairs 8
10. Spermathecal pores more than 2 pairs 9
11. Last spermathecal pores in $7 / 8$ Gemascoler mírabilis. Fig. 5
8: Last spermathecal pores in 8/9 Gemaxcolex pursatus, Fig. 3A
12. Spermathecal pores 4 pairs Gcmascolex octothecaus, Fig, 6A, B
13. Spermathecal pores 3 pairs
Genascolex lateralts, Fig. 4A. B 10. Last hearts in XIII 11
14. Genital marking(s) unpaired, midveotral Gcmascolex newmani. Fig. 7B
15. Mate pores about one third of the body circtmference apart. No genital markings present behind them Gernuscolex simitis, Fig. 3B12
16. Male poreshind themGemascolex stirlingi, Fig. 8A, B

TABLE 1
fonctsend distanticer in Micruseotes subius.

Nephropores inconspicuous, in the intersegmental furrows a Jittie less than $1 / 3$ bc below. e: first observed at $6 i 7$. Clitellum annular, XII1-XV1 with weak development through XVIf. well developed but not strongly protuberant, apparent as a smooth region owing io supression of intersegmental furrows 14/15 and $15 / 16$; setae and nephropores retained. Male pores minute, equatorial in XVII, lateral of setal lines $a_{\text {, ench in an oval field, which }}$ is not sufliciently elevated to be termed a porophore, the pores $1,26 \mathrm{~mm}, 0,14$ circumference, apart. Abcessory genital markings absent. Fcmale pores paired, almost at the anterior margin of XIV, shortly median of a lines. Spermathecal pores absent.

Sirongest septil 8/9-13/L4. moderately strong. Dorsal blood vessel single, continuous onto the pharynx. Last hearts in XII, those in X-XII latero-oesophageal, each with a conneclive from the dorsal and Itum the poorly distinguishable supra-ocsophageal yessel; the Jatter oesophageal only. Commissurals in VIIX dorsoventral only. Subneural vessel absent Gizzard rudimentary, in V. Oesophsgus thicker walled and more rugose internally in X-X1V than anteriorly, moniliform throughout though narrower in XV. Extramural calciferous glands absent, Intestinal origin XVI; typhlosole, caeca and muscular thiekening absent. Nephridta stomate, vesiculate holonephridia: those in ITIV each sending a duct laterally to discharge presetally in d line, the duct in II avesiculate, the ducts in III and IV each with a smull subspherical bladder; the nephritha in V dischasging through small subspherical somewhat crenulated bladders presctally immediately below c lines, the bladders joined medianly and slightly subterminally by the ducts: by segment VIII the duct median to the bladder is itself swollen and by XII the original bladder protrudes from the lateral aspect of the wedge shaped expansion of the duct and may be considered a short rounded diverticulum; the bladders reach their furthest separation from c line, at approximately one fourth $c b$, th the
vicinity of XVII and maintain this posifion further posteriorly. Caudally the diverticulum becomes a definite lateral caecum, about twice as long us wide, though hidden by coils of the nephridium. Holandric, clavate testes and noniridescent funnels in X and $X I$; seminal vesicles 2 pairs, racemose, in XI and XII. Metagynous; ovaries, flatteried lobes with severil conjoined strings of large oocytes, and tunnels in XIII; stnall ovisacs in XIV. Prostates almost straight, tubular, passing lateratly from the ducts in XVII and widening everily to the rounded free extremity so as to appear slenderly clavate: the external duct indistinctly demarcated but with a slight muscular sheen: the double vas deferens joining the duct at its entat third. Pertial setac present in two follicles. a and b, the b follicle entering the body wall in common with the prostate duct. Each penisetal follicle with two functional and two reserve setae: each seta almost straight, ectally tapering slightly to a blunt point. the ectal fifth bearing is longitudinal series of approximately 7 to 10 circumferential sets of short transverse incisions. the posterior burder of each incision forming a few minute anteriorly directed denticles: the incisions in at set arranged obliquely around the circumference of the seta; this urnamentation poorly visible under the light microscone; lengths of two functional setae 0.52 and 0.72 mm , general width of the shaft $16, \mathrm{~m}$ and $26 \mu \mathrm{~m}$ respectively. Spermathecae absent.

Material examined: Lml, $140^{\prime} 55^{\prime} \mathrm{E}, 38^{\circ} 01^{\prime} \mathrm{S}$, 26 km from Mt. Gambicr along road to Nelson. in sandy loam under grass among watules and gums and some garden escapes. B.3. anut T.W., 15.viii.1972- 2 specimens (BJ).
Type-locality: Sydney, Mulwala (N.S.W.): Adelaide.
Other Ausralian localities: Tas. (fide Michaelsen 1900); N.S.W.-Newcastle. Paramatta (Michaelsen 1907a, b): lenolan Caves area (Boardman 1943). South western Australid (Michacisen 1907a), Qld Toowoomba (Stephenson 1933). A C.T. (Gates 1962).
Remurks: Microscolex dubios is a euryhaline species circum-mundane in the northern and southern hemispheres mostly in warmer regions, though not tropical.

Absence of spermathecal pores, location of combined male and prostatic pores on XVII and progressive naimowing of setal interval ab in an anterior direction from approximately

Fig. 2. Genital fields of: A, Micrascolex duhius, specimen 1, Lm1. B, Heteroporodrilus shuphardi armatus, holotype. L11.

Symbols used in illustrations of genital fields: 9 ; female pore; g.m., accessory genital marking; 6 , male pore; sp.p., spermathecal pore, Roman numerals are segment numbers. Clitellum shaded. All by camera lucida.
segment XXII to XVHI allow ready recognition of this species.
Subfamily MEGASCOI,ECINAE s. Jamieson, 1971a
Tribe perionychini s. Jamieson, 1971a
Male and prostatic pores coincident or (Diplotrema part, New Caledonia) near together on XVII; sometimes with a single median combined male and prostatic pore.

Prostates one pair, tubular to racemose Purely holonephric, or with meronephridia in a varying number of segments anterior to holonephridia; never (?) with intestinal enteronephry.

Genus PERIONYCHELLA Michaelsen, 1907a
Perionycbella (\mathbf{P}) inconstans sp. nov.
FIGS 6C, 10A: TABLE 2

Length $=63(\mathrm{H})-77(\mathrm{Pl}) \mathrm{min}, \mathrm{W}$ (midslitellar) - $2 \mathrm{~mm}, \mathrm{~s}-122(\mathrm{H})-131(\mathrm{Pl})$. Pigmentless in alcohol with the exception of the reddish brown clitellum, Form attenuated; circular in cross section. Prostomium epilobous $2 / 3$, acute. closed; not candiculate. Peristomium not bisected ventrally. Setae 8 per segnent, in regular longitudinal rows throughont (H) or c and d irregular posteriorly (P1); at and b absent in XVIII.

Nephropores sporadically visible, on and behind the elitellum, anteriorly in their segments in h lines. Clitellum annular, very conspicuous owing to streng tumescence and its reddish color (almost fusiform and reminiscent of that of the aquatic genus Sparganophitus), clearly demareated in XIII-2/3 XVIII, but same clitellar modification and pinkish pigmentation present throughout XII and XVIII dorsalty, i.e. extent XII-XVIII ($=7$ segments); intersegments $13 / 14-17 / 18$ totally obliterated dorsally. Mate pores equatorial in a lines of XVIII on strongly protuberant, subcircular psipillac which fill all bue a small anterior part of the segment, the lateral borders of the papillac less elearly demarcated than the median borders. The papiltae lie in a whitish glandular field which interrupts the clitellum from shortly presetally in XVII, Iaterally beyond b in XVII and XVIII, and which extends posteriorly to include (H) or just precede (P1) the setal ate of XX. The setal annulus of XVII to shortly lateral of b forms a transverse ventral ridge Distinct uccessory genital markings are not recognizable in the male field but there is a suggestion of a transverse pad from mid $a b$ to lateral of b on each side filling the anterion third of XVILI. An unpaired, midven. tral, citcular accessory genital marking with depressed central area and porelike centre almosi fills the length of each of segments VII. VIII and IX and extends laterally to a or into ab (H, Pl; see Field Variation). Female pores paired shortly anterior to (H) or anteromedian (P1) to setae a of XIV in a common glandular field which fills $b b$ and longitudinally extends from 13/14 posteriorly to just include the ventral setal couples. Spernathecal pores in $7 / 8$ and $8 / 9$, ench on an inconspicuous papilla almost concealed in the intersegment, unpaired midventral (P1) or paired immediately median to a lines (H).

Thickesi sepla 7/8-9/10. moderately strongly thickened (H, P1). Dorsal blood vessel single, continuous onto the pharym (H) . Last hearts in XIII, those in X-XIII latero-

TABCE 2
Intersetal distances in Perionycbella ($\mathrm{H}^{\text {. }}$) inconstans

Setreent X1I	mm							
	3a	ab	ec	cil	Ud	de	ch	ba
Holctype	0.5	07	05	0.4	2.4	d. ${ }^{\text {d }}$	05	0.1
Parstype 1	0.3	0.2	0.4	0.3	2.1	43	0.4	U.2
Seguncri XX								
Tholotype	0.4	0.2	0.5	0.5	2.0	0.1	05	0.2
Patatyse /	0.5	0.2	0.5	0.3	2.0	0.3	9.4	0.2
	aa	siandurdined ax 艮 ol circumfirenec ab be od dd de cb						4
Sepmeut XIt								
Holntype.	10.6	4.1	10.6	7.1	46.6	4.5	9.8	49
Paratuge 5	77	5.4	9, 4	63	49N	7.7.	98	4.9
Mcall	9.1	1.7	4.9	b7	as. 2	7.1	681	49
Pricerval/ an	19	18	2.1	1.4	10.2	1.9	21.	1.0
Sexment XX								
Itointype	9.7	4.9	1, 6	98	atiol	6.7	10.7	4.2
Patatype 1	9.9	5.0	10,9	6.4	47.2	5.9	9.9	5.0
Mcaan	9.6	4.9	17,2	6.1	46,k	$6 . .4$	9.8	4.6
Interyalkan	2.6	10°	23	1.2	4.5	1.3	2.0	0.9

oesophageal, each titeiving a connective from the dorsal vessel and from the supra-oesophageal vessel. The latter vessel extends from 1/2 VIII XIV (Pl), $1 / 2$ XV (HI) and except at its extremities, is larger than the 山lrsal vessel. No subneural vessel detectable.

Gizzard small and glohose in V, its posterion limit being at $1 / 2 \mathrm{VI}$; muscular but easily compressed. Desophagus moniliform buil not evidently vascularized in VI-VII1, in LX-XIV moniliform and apparently with increased vascularization (especially vascular in IXI, in XV-XVII (H)-XIX (P1) tubalit and noly slightly vascularized, in XVHIt (H) similar to that in XVII but globose. Intestinal origin apparently XIX where the wall is thinner (\mathbf{H}) or XX (PT , with oesophageal valve at $19 ; 20$). not reaching full width until XXI: typhlosole absent, though a rudimentary mid-dorsal ridge is observable in paratype 1. muscular thickening and cacea absent (H, P1). Nephridia holonephridia first recognizable in $\mathrm{XI}(\mathrm{PI})$ or XIII (H) hut 2 pairs of small tuftike structures on the body wall, in IV and V (PI) may be tufted nephiridia (the exireme narmowness of the worm rendering dissection very diffculf): each bolonephridium with a laree preseptal funnel and narrow duct discharging presetally in b line,

Holandric. testes and iridescent funnels to X and XI ; seminal vesicles large, racemose. with many large discrete locuti. in IX and XII. Metagymous (ovaries consisting of a few irregular chains of very large oocytes and funnels it XIID; true ovisacs, ench with several very large oocytes. in XIV. Prostates a pair of thick short tortuous ubes restricted 10 XVIII (PL) or their ental ends just entering XIX ($1+$) ; muscular duzs straight or slighely curved, not sinuous. Penial setae present. their
follicles extending from XVIII into XX, fillform.

Spermathecae in Vifi and IX, each with a sacciform, narrow-slalked ampalla and μ digiti-form-clavate (inseminated) sinupus diverticulum joining the base of the duct and longer than duct plus ampalia, In paratype 1 there is only a single spermatheca in each segment, its duct entering the body wall below the ventral nerve cord. In the holotype there are 2 spermathecae in each segment, discharging median to a lines, and the right spermatheea in each segment has a replicated ampulla.
Field variation: The male genital field has the form described for the holotype in the 9 specimens selected as paratypes but the right pros. tate (and male porophore) is replicated in paralype 4 so that there is one in XVIII and a) further one in XIX. Midveniral unpaired accessory genital markings are present in VII, VIII and IX in 3 specimens (ineluding the holotype), in VII and VIII, in 3 specimens, and in VIII and IX in 4 specimens. Spermathecal pores, in $7 / 8$ and $8 / 9$, are paited shortly median of a lines in 5 specimens, paired but ventrally almose contiguous in I specimen, and are unpaired, midventral in 3 specimens, being externally untecognizahle in the remaining specinien.

Material examined $\mathrm{Hjl}, 136^{\circ} 44^{\circ} \mathrm{E}, 35^{\circ} 56^{\circ} \mathrm{S}$, in soft. waterlogged earth, bonded with grass and grass roots. on the banks of Rocky River, about 1.6 km N of Rocky River Homestead, Kangaroo I.: approximately 50 worms per square foot, l. Thomas, date?-H, PI-9 (plus many additional specimens). H , $\mathrm{P2}-$ (AM): P1, 5, 6(BM); P7 (SAM); P8, 9 and additional specimens (BJ).
Remarks: This species differs from others in Perionycheila in location of sephropores in b lines and in that $c d$ is not as large relative to ab. These differences may indicate that it is phylogenetically tistinct from the remainder of the genus hut erection of a separate genus for its reception does not appear necessary.
Genus HETEROPORODRILUS Jamieson. 1970
Heteroporodrilus shephardi (Spencer. 1900) armatus suhsp. now.

FIGS 2B, TOB, 1tA, 13; TABLE 3
Length $=1 / 3+(\mathrm{H}) \mathrm{mm}-\mathrm{T} 32(\mathrm{Pl}) \mathrm{mm} . \mathrm{w}$ $($ midclitellar $)=7(\mathbf{P I})-8(\mathrm{H}) \mathrm{mm} . \mathrm{s}=109+$ (H. posterior amporec; P1 domaged). Form angular in cross section the periphery being
straight between adjacent setal lines. Pigmented greyish brown but pale yentrally in alcohof. Prostonium protanylobous, with a transverse furrow at $\mathrm{O} / 1(\mathrm{H})$ or epitanylobous with a transverse furrow at $\ddagger 1$; the peristomium with several Iongitudinal furrows so that extension of a dorsal prostomial tongue to $1 / 2$ is questionable. Canalicula absent. First dorsat pore 6/7 (H, P1). Setae 8 per segment, it regular Inngitudinal sows throughout; setae a and b absent, replaced by penial setae, in XVIII.

Nephropores conspicuous, anterior in their segments in the holotype in $11(?)$, III-IV in d lines; in V-IX alternating from d to mid be (commencing in V in d on the right and mid $b c$ on the left $)$; thereafter alternating from d to b (in X in b on the right and d on the left); the nephropores symmetrically disposed in paratype 1: in II-IV in d lines; in V and VI in mid be; in VII-IX allernating from d to mid $b c$; in X backwards alternating from b to d (examined in H and Pl to $20 / 2 \mathrm{I}$). Clitellum annular, X1V-1/3 XVII; dorsal pares occluded in 14/15-16/17; intersegmental furrows fainter dorsally; setae and rephropores clearly visible. Male pores on XVIII in b, each on a slender papilla strongly protuherant from an indistinct low circular prominence. Accessory genital markings; transverse oval to oblong pads with porelike centres in VI (iniTateral, right), VII and VIII (paired) filling $u h$ and with centres at or slightly behind the setal are; similar but larger pads almost filling the scgments longiludinally and with centres immediately presetal in $a b$ paired in XT and XII and unilateral, right, in XXII: paired deep pits in oh in 17/18 and immediately behind

TABLE 3
Imersetal distonces in Hetcroporodrilus shephardi armatus

	14	ab be ed	$\min _{d d}$	its eb	
Sepment XII bil ab be. ed dd as ef bs					
Parstye 2	2.3	$\begin{array}{llll}1.4 & 2.2 & 2.4\end{array}$	4. 4	2.4	17
Paratype 3	19	$\begin{array}{llll}1.5 & 2.3 & 2.6\end{array}$	5.4	$2.5 \quad 2.2$	1.5
Suerrent XX					
Folatype	3,D	16 253.9	6.2	3.72 .9	1.5
Paratype 2	23	1.21 .812 .9	4.4	3.122	1. 4
Pamryoc 3	1.9	$1 ; 3.3 .48 .4$	5.2	2.42 .4	11
	33	standurdind as \% of circuinference ah bc ed dd de co ba			
Srument X11 90					
Holotype	9.5	7.5122140	250	13.311 .4	7.0
Paracype ?	21	7411.612 .6	23.1	$12.6 \quad 11.6$	9.0
Paratme 3	9.5	$\begin{array}{llllll}7.5 & 11.6 & 11.1\end{array}$	27.1	12.671 .1	7.5
Mean	10.4	7S 11S 13.2	25.1	12.811 .4	7.8
Intervat/ah	1.4	$\begin{array}{llll}1.0 & 1.6 & 1.8\end{array}$	3.3	1.71 .5	1.0
Scameat XX					
Hnlotype	117	62113152	24.1	14.411 .3	5.8
Paratypo 2	11.9	$6,2 \quad 9.315 .0$	22.5	12.611 .4	73
Jaratype 3	99	5.812 .512 .6	27.2	12612.	5.8
Mean	11.3	6.411 .114 .3	24.7	14.7 11.8	6.
Tresreal/al,	1.7	$\begin{array}{llll}1.0 & 1.7 & 2.2\end{array}$	5.9	2.21 .8	1.0

18: 19 , a small indistinct eyelike marking present puxtero-lateraliy to each pit (H, see Fich Variation). Female pores inconspicuous midway between the setal arc und anterior border of XIV, shorzly median of a (H. PI). Spermathecal pores 3 pairs in 6/7, 7/8 and $8 / 9$, in b lines (and with inconspicuous ellip(ical lips, (H)) or shortly Tateral of b lines and preceded by a semicircular swelling which fills the posterior thind of the previous segment (P 1$)$.

Septa $8 / 9-11 / 12$ strongly thickened. Dorsal blood vessel single, continuous oum the pharynus. Supra-oesophageal vessel traced into VIII, noi demonstrable in VIl, ending pos¿eriorly in XIII, recciving a transverse vessel from each of the calciferous glands, in X-XII. Lins bearts in XIII, those in X-XIIL, which are stont originating from the calciferous vessels and receiving sleader connectives from the dorsal vessel flatero-oesophageal hearis): commissurals in VII-IX more slender, dorsoventral only und, unlike the latero-oesophageal heapts, with parietal branches but meveriheless valvular; vessels from the dorsal vessel in V and VI branching on the gut. Gizzarid broad, ghossy. strang hat fairly easily compressible (H) or elongate and firm (P1), the preceding ocsophagus, in IV. forming a wide flaceid proveitriculuk. Oesophagus unmodified in IX. bearing 4 pairs of ventrolateral broadly sessile extramural catcifecous glands, in X-XIII, the lumen of each gland atmost occluded by fumerous radial lamellac. Ocsophagus short, narrow and chloragagenows in XIV, Intestinal origin XV, typhlosole absent. Holonephric. nephridia with moderately lutge subspherical lerminal vesicles, which are readily visitle in the posterior intestinal region, are less well developed in the anterier intestinal region und not apparent in the forehody; preseptal furnels large, if ab irrespective of position of hadder (first demonstraled in XIV), Compacted sperm masses surronuding jridescent sperm funnols in X atod X1: semiral vesicles racemose, in TX and XII. Large racemuse prontates a pair, in XVI XXI, a \mathbf{U}-shaped muscular duct passing medianly from the middle region of the gland; the duct bifurcating at its ental extremity to receive ducts from the nuterior and posterior portions of the gland: vas ileferens joiming the doct near its ectal end.

Perial selae slendet, situous, almost filitorm, the ectal region. viewed from either side. ornamented with irregular, approximately transverse ts oblique rows of a few (P1) to several.
(H) triangular itattened scates, which exeept at their bases are free from the setal surface but point towarts the ectal extremity of the seta; the scales in the holotype with single. bifid or trifid points and in two or three groups, each group corresponding upproximaicly with one of the conarser scales of paralype 1; total number of seales counted in it longitudinal line approximately 21 (in 0.21 mm) and 37 (in 0.44 mm) in (wo setae of the holotype; ench seta tapering to a rounded bill delicate point: length of a fully developed seta $2.9(\mathrm{P} 1)-3.7(\mathrm{H}) \mathrm{mm}$; width of the most strongly ornamented region 27 or $20 \mu \mathrm{~m}(\mathrm{H})$ and 23 fm (P1). Fenale organs not ohservable (H): ovaries with numerous egg strings, and funnels in XIII: ovisacs absenc. Spermathe. cae three pairs discharging anteriorly in their segments; ampulla subspherical, slightly shorted than the stoutly fusiform muscular glossy Juer; an ahruptly widening clavate diverticulum less than one third the Jength of the duct arising from the median aspect of the duct shortly extal of the ampulla (H. PI).
Field variu,ion: In the four type specimens paired pads in $a b$, which do not include the anterior portions of their segments, are present in VI. VII and VIII in H (R), P2 and P3. A liplike swelling extending to the preceding setal arc is present in these segments in front of each spermathecal pore in PI-3. An uapaired midventral circular postsetal marking with porelike centre is present in each of segments VI. VI1 and VIII in P2 or in VifI only in P3. Paired pads median to sctac b and oceupying much of the length of the segment are present in X in Pl and P 3 , in XI in H and P 1 and 3, and in XII in H, P2 and P3. Paired pits in ab lie in intersegment $17 / 18$ and immediately behind 18/19 in H. P1, 2 and 3. Paired oval padk in ab occur in XXUI in P2 but there is only one unilatlerat pad in $H(R)$, $P 1(R)$ and $P 3(L)$. Indefinite tumid areas man be present in the vicinity of the paired pits of $17 / 18$ and $18 / 19$, i.c. itl defined eyelike markings posterolateral to the pits in XVIII and XIX in H or posteromedian to the pils in XYIII in P1 and P3 and in XIX also in PI.

Material examined: LII, $140^{\circ} 49^{\prime} \mathrm{E}, 37^{\circ} 28^{\prime} \mathrm{S}$, II km S of Penola in eucalypts fringing Pines radiata BJ. and TW, 15, viii-1972-H. Lk2. $140^{\circ} 42 \mathrm{E}, 36^{\prime \prime} 37 \mathrm{~S}, 37 \mathrm{~km}$ from Bordertown along road to Naracourte, in bank of temporary pool in grassland with sparce grasstrees and cucalypts, T.W., 16.vili.1972P4, $1 \mathrm{k4}, 140^{\circ} 44^{\prime} \mathrm{E}, 36^{\circ} 59^{\prime} \mathrm{S} .2 \mathrm{~km} \mathrm{~S}$ of

Naracootte, in sandy soil with bracken and wattles neat pasture, B.J. and T.W. 16.vii.1972-Pi-3. $\mathrm{H}(\mathrm{AM}) \mathrm{P} 1-2(\mathrm{BJ})$; P4(BM); P3(SAM).
Remarks: The new material agrees with H, shepharai alonc in the genus (vide Jamieson 1970) in altermation of nephropores between d and mid bc. rather than the usual d to c, and it is hore included in H; shephardi as a new subspecies although it shows differences including the distribution of genital markings and the presence of penial setae, which might be considered to warrant separate specific status. Whether or not it be reproductively isolated from the nominate subspecies it is unquestionably, from its morphology, more closely related to the latter than to any other taxon in Heteroporodrilus. H. shephardi belongs to in group of species with four pairs of calciferous glands, the other members of which are H. canalfculatus (Fletcher 1889a) and H. mediterrevs (Fletcher 18886). The latter two species ocenr terrestrially in upper reaches of the Murray-Darling river sysiem whilc $I /$. stephardi neeurs on the Wimmera River.

Tribe mbgascolecini s. Jamieson, 1974a
Male and prostatic pores coincident on XVIII (rarely XVII), prostates one pair, racemose (wilh branched internal duets and no single cental lumen) or tubular (with a single centeal lumen). Purely meronephric; median stomate nephridium, if present, opening into the intestinc.
Genis GEMASCOLEX Edmonds \& Jamieson, 1973
Terrestrial. Body circular in cross section or (G. bursaus) dorsoventrally depressed. Prostumium epilobous to tanylobous; peristomium bisected by a longitudinal furrow ventrally, which is more conspicuous thon other grooving which thay be present, or (G. mirabilis and G. stirlingi) grooving present all round but not more conspicuous ventrally. Setae numerous (more than 8) in each segment. Nephropores not externally recognizable. A pair oí combined male and prostatic pores on XVIII. Clitellum annular anterior to 18/ 19: its intersegments and dorsal pores obscured at maturity but setae visible. Intersegmental accessory genital markings always present. Female pore presctal in XIV and midventral or, as a rare individaal variation (G. lateralis), paired. Spermathecal pores $2-4$ pairs in $5 / 6-$ 8/7. 2 pairs in $6 / 7$ and $7 / 8$, or a pair in $5 / 6$ snly.

Dorsal blood vessel single; continuous onto pharynx. Hearts in X posteriotly lateroocsophageal, each arising from the short supraoesophageal vessel and from the dorsal vessel. Last hearts in XII er XIII, latero-ocsophageal vessels (always?) present median to the hearts. Subneural vessel absent. Gizzard large, in V or VI. Oesophagus lacking extramural calciferous glands. Intestine commencing in XVII; a ridgclike low or (G. walkeri) decp dorsal typhlosole present; caeca and muscular thickeoing absent. Excrefory system meroncphric. Paired tufts present in II. III-V of which at least those in IV and V are enteronephric, with ducts entering the buccal cavity and/or the pharynx, Caudally with numerous enteronephric meronephiridia, each with a preseptal funnel, discharging into the intestine in each segment and with or withoul a longiladinal collecting duct (ureter) on each side. Testes and funnels in X and XI: testis-sies absent: scminal vesicles in XI and XII or rarely in IX, XI and XII.

Ovaries and funnels in XUI; ovisacs present or absent. Prostates tubuloracemose: linear, lobulated. with axial lumen throughout which receives lateral canaliculi: vas deferens joining their muscular ducts. Perial setae absent. Spermathecae with diverticula.
Type-species: Gemaycoler newmani Edmonás \& Jamieson, 1973.
Distribution: South Australia and Victoria.
CHECKLIST OF SPECIES
*New combinations in Gemascolex

South Australia:

1. Gemascolex bursarus sp nov.
2. Perichaeta Jateralis Spencer, 1892 (also Vicioria), syn. Megascolex zieszi Michaelsen. 1907b
3. Gemascolex mirabilis sp. nov.
4. Gemascolex newmani Edmonds \& Jamicson, 1973
5. Gemascolex octorhecatus sp, nov.
6. Gemascolex similis sp. nov.
7. Perichaera stirlingi ${ }^{+}$Fletcher, 1888a, syn, Megascolex fletcherl Shannon, 1920
8. Gemascolex walkeri sp. nov.

Victoria:
9. Perichneta dorsalis* Fletcher, 1888 b

Gemascolex bursatus sp. nov.
FIGS 3A, 10C, 11B-E; TABLE 4
Length $-52(\mathrm{P1})-64(\mathrm{H}) \mathrm{mm}$, w (midclitel-$\mathrm{lar})=1.5(\mathrm{Pl})-2.5(\mathrm{H}) \mathrm{mm}, \mathrm{s}=81(\mathrm{P} 1)-$ $102($ H). Pigmerted purptish-brown dorsally, pale ventrally; setae in pale circular fields.

TABIEE 4
Intersetal distances in Gemascolex bursalus

Sebnemi $\mathrm{XIS}^{\text {a }}$	mm					Bandardized as \% of circiumference			
		36		23	4	a4			z
Holotype	0.6	0.4	0.4	0.5	3.2	12.2	76	73	10.7
Priatype I	D. 4	0.1	0.1	0.4	4.2	8.4	0.0	7.1	10.1
Mean						10.3	53	T 5	102
tntorval/ah						1.5	1.0	11	1.5
Sesmeni XX									
Halotype	0.7	0.5	0.4	03	5.8	12.8	8.8		14.0
Peratyoc 1	0.6	0.3	0.3	05	4.6	13.6	6.5		10.6
Mean						13.2	7.6	71	12,3
Interval/ab-						1.7	1.0	0.8	t. 6

Prostomium tanylobous, narrow, acute (II) or epilobous, $3 / 4$, open. Cirralicuta absent. Dorsal pores minute, the first in $4 / 5$. Setae of each side more closely spaced laterally than dorsally and ventrally: $a \delta$ and $b o$ approximately equal, Numbers of setac per segment is in XII, 16 in XX ($\mathrm{H}, \mathrm{P} 1$), 20(P1)-22(H) firteen segments from the caudal end; a and z. lines straight throughout: anteriorly with a wide break in the setal circlet dorsally and ventrally: posterionly with a moderate ventral and almost inappreciable dorsal break. Setae a and b but not c absent in XVIII. Clitellum (developed in holotype oniy) XIII-XVL $(=4$ segments). Male pores extensive transverse slits, with puckered lips but no porophares, immediately median to setac c of XVIH, $1.05(\mathrm{H})-1.30(\mathrm{PD}) \mathrm{mm}, \quad 0.29(\mathrm{PL})-0.381 \mathrm{H})$ circumference, apart. A circular, Jow domeshaped accessory genital marking present at $17 / 18$ and $18 / 19$ in front of and behind the: male pore, on the left side, but at 18/19 only on the right side (It): paired in these locations in PI. A pair of elliptical eyelike markings in $16 / 17$ in ah (HI moly) and a further pair of circulat to elliptical markings in $8 / 9$ slightly lateral of h lines (1I, P1); all accessory genital markings rudimentary in PL. Spermathecal pores 2 pairsi in $7 / \mathrm{X}$ and $8 / 9$, laterally situated gaping clefts, shortly lateral of setal lines 4 , $1.32(\mathrm{H})-2.0(\mathrm{P} 1) \mathrm{mm} .0 .48(\mathrm{P} 1)-0.56(\mathrm{H})$ circumference, apart.

Strongest septa $9 / 10-13 / 14$, moderately strongly thickened. Last hearts in XII. Shupraoesophageal recognizable in $\mathrm{V} \Pi(\mathrm{H})$, VIII(PI) $-\frac{1}{2} \operatorname{XIII}(\mathrm{PI})$. XIII(H), well (eveloped. Gizzard in V. Intertine originating in XVII in which it rescmbles the vascularized regions of the oesophagus; a low tortuous dorsal typhlosole first considetably developed in XXVIII but traceable forward as a rudiment to XXIII. Nephridia: a pair of tufts in each of segments II-V, increasing from shall to large posteriad; those in IV and Y sending
composite ducts to the pharynx; those in II and III apparently exonephric; smull exoneplitic tufts in VI accompanied tateratly by micromeronephridia (H, PL): numerous intogumentary micromeronephridia in VII posteriorly, at first posterior in their segments (H , P1), in XV1-XVII especially conspicuous and densely crowded on the body wall (H); thereafter (H, PI) moderately numetous on each side and posterior in each segment; caudally with several (as many as 8 or 9) enlarged nephridia on each side with a preseptal funnel, at least some of these nephridia on each side sending ducts to the roof of the intestine; accompanied in the holotype by smaller astomale, (exonephric?) nephridia; no ureters demonstrable. Precise description of the nephridia must be postponed until more appropriately fixed material is available.

Sperm funnels in X and XI (Fridescent in the mature holotype); seminal vesicles racemose, in XI and XII. Ovaries oval laminae with several large oocytes- (H), rudimentary in the paratype; accompanied medianly by small sacs of unknown function; ovisacs present. Prostates tubuloracemose, each with flattened leaflike gandular portion, in XXIIXXVI, XXVII, deeply incised by the septa and adherent to the intestine; the muscular duct straight in XIX-XXII but in XVIII curving medianly around the anterior face of a large subspherical bursa copulatrix. A conical penis-like structure projecting from the bursa into the male genital aperture though not visible externally: vas deferens joining the iunction of prostale duct and gfand (H): prostate glands rudimentary in P1.

Spermathecae 2 pairs, in VIII and IX: duct. ampulla and diverticufum tortuous; the diverticulum (inseminated) slender, tubular, onifoculate, a little larger than the ampula (H): spermalhecae rudimentary in Pl .

Malerial examined: Ji3, $138^{\circ} 30 \mathrm{E}, 35^{\prime} 22^{\prime} \mathrm{S}$, hill 8 km from Myponga, S. Ellononds. (6. viii. 1972-H(AM), PI(BJ).

Remarks: The muscular bursae at the eetai ends of the prostate stucts in this species are anique in the genus.

Gemascolex lateralis (Spencer, 1892)

FIGS 4A, B, 10D-F, 11F; TABLE 5

Perichaeta Jatrontis Spencet, 1892: 11-12, P1 VI, figs 55-57, 78.
Megascolex Lateratis Michaelsent 1900: 220. Jamieson. 1971b: 95 ,
Mrgascolex ziotzi Michàelsen, 1907\%: 17-19. Jamieson. 1971b; 95,

Fig. 3. Genital fields of: A. Gemascolex bursatus, holotype, Jj3. B, G. similis, holotype, L12.

The following account is drawn from the lectotype, two specimens from locality Jiz (SA77, 79), a specimen from L11 (SA15), and one from Lk3 (SA229). These are referred to as L, and specimens $1,2,3$ and 4 respectively in the account.

Length $=45$ (specimen 3$), 74$ (specimen 2) $-80(\mathrm{~L}) \mathrm{mm}$ (specimens 1 and 4 are pos-
terior regenerates), w (midclitellar) $=3-4$ $\mathrm{mm}, \mathrm{s}-87$ (specimen 3), 109 (specimen 2)122(L). Circular in cross section. Pigmented purplish brown dorsally with the setae in pale fields (specimens 1 and 2); or pigmentless (bleached?) (L; specimens 3 and 4). Prostomium epilobous $1 / 2$ (specimens 3 and 4) and $2 / 3$ (specimens 1 and 2) or appearing

TABLE 5
Interntal thatantas in Gemasoolex lateralis

\$7tment X!	mis					slandardized is ris of ciecuinterenoo			
	73	ab	$2 y$	78	11	as		Ey	cc
15 S 7	11	00_{0}	0.7		$11 *$	9.4	4.6	0.1	9.4
25879	1.0	D. 8	0.7	1.0	11.9	8.5	6, 6	3.6	11.3
3 SA 15	n.f.	0,8	0.8	0.9	ts	7,2	4.0	3,b	11.3
4 SA 229	0.7	D. 4	0.5	0.9	9.2	76	4.4	5,4	9.2
Semment XX									
$15 \wedge 77$	1.9	0.5	11.5		12.1	10.4	45	4.4	8.9
2 SA 79	14	as	06	1.2		10.7	5.9	4.6	8.9
3 SA 15	1.0	85	104	3,1		10.5	${ }_{2} 3$	1.8	11.9
45 A 229	1.1	0.5	0.5	1.3		$\pi 1.6$	33	5.3	137

tanylobous (L); not ur faintly canaliculate, closed or open. First dorsal pore 4/5. Setae more closely spaced ventrolaterally than dorsally and ventrally on each side; $a b$ significantly, but not greaily dirger than to in most segments: numbers of setae per segment 2131 (mican of 5 26) in X11, 17-24 (mean of $5=22$) in XX, 20-38 (mean of $5-26$) Gifteen scgments from the caudal end: a distiliset though only moderately wide ventral hreak present throughout; a dorsal break present in the forcbody but behind the clitellum only initially recognizable. or present but narrow throughout. Setac α, b and c absent in XVIIT or (L) a and b, only absent.

Cliteflum XIII (specimens 2-4) XIV (C epecimen 1)-XVI (L, specimen 1, 2), 1/3 XVII (specimens 3 and 4) $\{=3-41 / 3$ segments). Milc pores on prominent rounded porophores in c lines of XVIII. distance apart 2,04 (specimen 3), 2.81 (specimen 4), 3.1 (L). 4.04 (specimen 1). 4.92 (specimen 21 mm ; ratio of this to circumference 0.26 (L). 0.30 (specimen 4). 0.31 (specimen 3). 0.33 (specimens 1 and 2), Accessory genital markings, at pair of eyelike markings in each of intersegments $9 / 10$ and $10 / 11$ in ah 1L: specimens 1-4). Additional markings in 17/18-21:22, varying from a lines at $17 / 18$ to slightly median of zt at $21 / 22$ (1.), or in 17/18-22/23 (specimens 1 and 2) or ahsent (specimens 3 and 4). A further pair of subcircular markings present in XVILI in front of the male pores (L; specimens $1-4$) and a second pair behind them (specimens 1 and 2) (sec Field Variation), Spermathecal pores 3 pairs. clearly visible suriken orifices or inconspicuous, if 6/7-8:9, between setal lines 4 and 5 ; distance between pores $=2.04$ (specimen 3). 30 (specimen 4), 4,5 (lectotype). 4.92 (specimen 1), 5.62 (specimen 2) $\mathrm{mm}:$ ratio of this distance to circumference $=0.24$ (specimers 3), 0.34 (specimen 4), 0,35 flectolype), 0.38 (specimen 2), 0.42 (specimen 1),

Several pre-intestinal septa thockened but none strongly. Iast hearts in XII. Supraoesophageal vessel in $1 / 2$ VIII-1/2 XIII, well developed (specimens 1 and 2); ill-defined in specimens 3 and 4. Vascular system not intact in the lectorype. Gizzard in V. Intestinal origin XVII; a very low, rudimentary: dorsal typhiosole first definitedy recognizable in XXVII. Nephridia: small paired lufts in If and Ifl with anterolaterafly directed composite ducts which in specimens $3-4$ appear to be exonephric but in the lectotype join the buccal cavity at its anterior limit. Large lufts in IV and V enteronophric. their composite Jucts running anteromediglly to join the phanyns: Numerous exonephric astomate micromeronephridia present in 1 or more bands in V posteriorly (visible from II in specimens 3 and 4), associated with the anterior and posteriot septa in XV especimens 1 and 2) or XV1s ispecimens 3 and 4) posteriorly. Caudally with approximately 8 enlarged nephridia. each with a preseptal funnel on each side; ont or two nephridini ducte traced to the roof of the intestine but prohably all enteronephric; ro longitudinal collecting ducts demonstrable. Sperm funnels iridescent in X and X1; seminal vesicler slightly racemose. almost sacciform, 2 or 3 pairs, in 1X (L. specimens 1 and 2), XI and XII (all specimens). Ovaries, flatiened webs on lobes with several conjoined strings of large oocytes, and funnels; a crescentic sac of unknown function seen on the anterior sepfum of XIII median to the ovaries in the lectotype and specimens 1 and $2:$ sacs on the anttcrior septum of XIV questionahly ovisacs. Prostates tubuloracemose, hand-sections of one of specimen 3 revealing a very natrow ceniral lumen; the broad glandular portion linest, in XVIII-XXIt. XXIII deeply incised by the septa: the muscular duct forming a loop at least the cetal limb of which widens strongly hut a copulatory bursa absent: the vas deferens joining the duct near its junction with the gland. No glandular masses distinguishable internally of the sites of the accessory gental markinge Spermathecac 3 pairs, diverticulum (inseminated) single. tubular. very long and much coiled.
Ficld variation: Anterior genital markings are commonly absent in specimens with well developed markings in the vicinity of the male genital ficld. When anterior markings are present they usually occur in 9/10 and 10/11 but they sometimes are present in $10 / 11$ anly and arely in 8/9 only; there are rarely 3 puirs.

Fig. 4. Gemascolex lateralis. Genital fields of: A, specimen 1, Ji2; B, specimen 3, L11.
in 8:9, 9/10 and $10 \% 11$. A pair of markings is invariably present in XVIII in front of the male pores and a further pair is usually present behind the pores. In no specimens are the posterior markings present in the absence of the interior pair.

Paired intersegmental genital markings in the vicinity of the male pores may be absent
but they are usually present in $18 / 19,19 / 20$, commonly in 20/21 and 21/22 and less frequently in $17 / 18$ and $22 / 23$.

In all but one of the many specimens examined, the female pore was unpaired.

Material examined: Jg1, $138^{\circ} 03^{\prime} \mathrm{E}, 32^{\circ} 46^{\circ} \mathrm{S}$, Alligator Gorge National Park, under rocks near creek in gorge, B.J. and T.W.,

19,viii. 1972-SA 26-30, 33. $7 \mathrm{~h} 2,138^{\circ} 38^{\prime} \mathrm{E}$, $33^{\circ} 55^{\prime} \mathrm{S}, 10 \mathrm{~km} \mathrm{~S}$ of Clare on road to Nuburn, under eucalypis, B.I. and T.W., 18.vili.2972-SA 165, SA 170, SA 318, 319. $\mathrm{Ji} 2,138^{\circ} 24 \mathrm{E}, 34^{\circ} 58^{\circ} \mathrm{S}$, Mt. Lotty, T. $\mathcal{W} .$, 16.viii. 1972-SA 306 Mt. Lofty, in encalypl woodland, B.J. and T.W., 16.viii.1972-SA $289-296,298,299,301-302,304,305$; Mt. Tofty area, in moist soil in eucalypt sclecophyll. T.W, 20.viii. 1972-SA 77, 78, 79, 82, $85.1 \mathrm{j} 1,138^{\circ} 41^{\prime} \mathrm{E} .35^{\prime} 07^{\prime} \mathrm{S}$, Mt. Bold reservoir. on hillside with eucalypts and griss, T.W, 2 I.viii. 1972 SA $57-60 . \mathrm{Jj} 2,138^{\circ} 43{ }^{\prime} \mathrm{E}$, 34*14'S. Kyeema National Park, near creek and under logs in cucalypt sclerophyll and in swamp, T.W, 21.viji.1972-SA 271, 279, 286, 287. Jj3, $138^{\circ} 30^{\prime} \mathrm{E}, 35^{\circ} 22^{\prime} \mathrm{S} .6 .5 \mathrm{~km}$ from Myponga, S. Edmonds, 16, viii.1972SA $236,237.5 \mathrm{~J}, 138^{\circ} 31{ }^{\circ} \mathrm{E}, 35^{\circ} 26^{\circ} \mathrm{S}$, near Mt. Clark (S of Myponga), eucalypt sclerophyll, $T, W, 21$, viii.1972-SA 64, 6972. Jj5, $138^{\prime} 11 \mathrm{E} .35^{\circ} 36^{\prime} \mathrm{S}, 8 \mathrm{~km}$ from Cape 3ervis along road to Victor Harbor, in grasstrec, bracken and eucalypt bushland, T.W., 21.viii.1972-SA 265, 267. Jj6, $138^{\circ} 21^{\prime} \mathrm{E}$, $35^{\circ} 34^{\circ} \mathrm{S} .24 \mathrm{~km}$ from Cape Fervis along road to Victor Harbor, under rocks and logs in poor soil. $I: W, 21$. viii. 1972-SA 207, 209, $210,215,3 j 7,138^{\circ} 25^{\circ} \mathrm{E}, 35^{\circ} 33 \mathrm{~S}, 30 \mathrm{~km}$ from Cape Jervis along road to Victor Harbur, in grasstree and eucalypt mulga, $\boldsymbol{T} \cdot \boldsymbol{W}^{*}$, 21, viil.1972-SA 172, 176. Jj8. 138²32'E. $35^{\circ} 34^{\circ} \mathrm{S}, 10 \mathrm{~km}$ from Viclor Harbor to Cape Jervic, under roadside \log, T.W., 21.viii. 1972 - SA 42 (inmulure). Kil, $\quad 139^{\circ} 28^{\prime} \mathrm{B}$, $35^{\prime} 15^{\prime}$ S. Tailem Bend, under rocks on bank of the Murray River, B.J, and T.W., 16.viii 1972-SA 188-190, 192-193, 195201, 203-205 Lk3, $140^{\circ} 38^{\prime} \mathrm{E}, 36^{\circ} 42 \mathrm{~S}, 32$ km from Naracoorte to Bordertown, in samdy soil among Banksia, gums and bracken, B.S. and T.W., 16.viii.1972-SA $219230.111,140^{\circ} 49^{\circ} \mathrm{F}, 37^{\circ} 28^{\prime} \mathrm{S} .11 \mathrm{~km} \mathrm{~S}$ of Penola at roadside, under cucalypts fring. ing Pinus rodiala. B.J. and T.W.. I5,viii 1972-SA $15 . \quad$ LI2. $\quad 140^{\circ} 32$ 'E. $37^{\prime \prime} 41^{\prime} \mathrm{S}, 18 \mathrm{~km}$ SE of Millicent on soad io Mt. Gambier, in sandy soil with trass, bracken and Drosera fringing a Pinus radiata plantation; T.W. 15.viii.1972-SA 47 SA 15, 79 (AM); SA 77, 229 (BM); SA 289 (SAM) ; the remaining specimens (BJ),
Remarks: Examination of the lectotype of Perichoefa laterulis reveals the presence of paired genital markings, overlooked by Spencer, in $9 / 10$ and $10 / 11$ and does not confirm
pairing of the female pore reported in his description. Agreement of the new material, and Michselsen's descripion of Megascolex tierzz, with the lectotype is so close as to allow no doubt of conspecificity.

The possibility that an infeaspecific morph, subspecies op, less likely, a sibling species should be recognized for at least some populations which have gemtal markings on XVIII both behind and in front of the male pores deserves investigation. In such specimens (exemplified by specimens 3 and 4) the male spermathecal pores, although in the same setal lines as the typical morph. (exemplified by the lectotype and specimens 1 and 2$\}$ are usually closer together transversely, The spermathecal diverticula are, so far as investigated, shorter and less convoluted. Furthermore, paired intersegmental genital markings in the vicinity of the male pores may be absent though frequently present. The nccurrence sympatrically on Mt. Lofty of specimens with or without markings behind the male pores, in addition to those in front, at present milisates against recognition of subspecies. However, it is hoped that a statistical examination of morphology in papulations of G lateralis and of their trology will be undertaken by workers in South Australia with a view to determining the status of the variants mentioned.

G- laterales is the only indigenous megascolecid, other than Heteropowodrilus shephardi, known to occur outside South Australia (in Victoria)

Gemascolex mirabilis sp, nov,
FIGS 5, 10G; TABLE 6
Lenglh $=60\{\mathrm{H})-83(\mathrm{Pd}) \mathrm{mm}$. w (midclitellar) $-5,5(\mathrm{H})-6.9(\mathrm{PI}) \mathrm{mm}, *=$ 120(P1)-128(H). Circular in cross section. Pigmentless with the exception of the brownish clitellum. Prostomium epitanylobous. closed at 1/3 peristomium and lateral borders to 0/1 not certainly disinguishable from longitudipal furrows on the peristomiom but bisected by a deep canalicula to $0 / 1$. Peristomium longitudinally grooved all round but not bisected ventrally. First dorsal pore $3 / 4$, fimperforate?, P1), 4/5 (H, P1). Setae subequally spaced. though $b e$ is slightly wider than $a b$ throughout. Numbers of setae per segment 20 (P1)-21(H) in XII, 2J(PJ)-22(H) in XX, 20(H)-2I(PI) fifteen segments from the caudal end; a limes straight throughotit; z lines straight arterior to, irregular postcrior to the clitellum: a ventral

TABLE 6
Interselal distances in Gemascolex mirabilis

Segment XII	a3	mimi			-	standardiwed an \% of circumference			
		ab.	2 H	32		3.4	ab		20
Hototype	1.0	0.4	0.7		125	7.6	1.5	5.7	11.3
Pauavd 1	1.2	06	0.8			7.4	40	5.4	10.5
Mcan						7.5	3.8		11.1
Iftersal/ab						2.0	1.0	1.6	3.0
Serment XX									
Holotyre	0.7	0.4	1.2		13.9	5.3			17,9
Paratype 1	1.4	0.6	1.0		17,6	8.0		5 5,	11.2
Meat						6.9		7.2	12.5
Interval/ab						22	1.0	2.4	4.1

and a dorsal break present throughout. Setac a and b, but not c, absent in XVJII.

Clitellum $\operatorname{XIII}\left(\mathrm{P}_{1}\right), 1 / 3 \mathrm{XIII}(\mathrm{H})-\mathrm{XVH}(\mathrm{H})$, $1 / 3$ XVIFI $(\mathrm{Pl})(=42 / 3-51 / 3$ segments $)$. Male pores minute lungitudinal slits in $a b$ near the median borders of a pair of large porophores; the pores $1.40(\mathrm{H})-1.79$ (12]) mm , $0.09(\mathrm{H})-0.10(\mathrm{P} 1)$ circumference apari. Accessory genital markings paired transversely elliptical tumescences, with slit like centres, extending from lateral of c to median of b_{4}, in 16/17(P1), 19/20, 20/21(14. PI), 21/22 and $22 / 23(H)$, Spermathecal pores 2 pairs of small pores concealed in $6 / 7$ and $7 / 8$, in $a b$, nearer «4. with a faintly demareated lip in front of each on the preceding segment; the pores $1.37(\mathrm{H})-$ $1.72(\mathrm{Pl}) \mathrm{mm}, 0,09-0.11$ circumference aparl.

Strongest septa 9/10-12/13, moderately stromgly thickened. Last septal glands in IV, not involving the gizzard. Last hearts in XIII. connectives in X-XIII from supra-oesophageal larger than the dorsal connectives and each joined before it reaches the latter vessel by a vessel from the corresponding side of the oesophageal wall. Supra-nesophageal in XXIII, weakly developed despite the large size of the connectives to the hearts. Gizzard in V, Ocsophagus almost suppressed to VIII and short in IX owing to hackwards projection of the gizzard; vascularized (though not conspicuously) and dilated in X-XIII, with high internal villi almost occluding the lumen but not uniting axially. Intestinal origin XVII: a well developed, though low, tortuous dorsal lyphlosole commencing in $\mathrm{XXV}(\mathrm{P} 1)$ or XXVI(H). Nephridia: a large pair of tufted nephridia, with inoumerable spiral loops, in VI sending several composite ducts anterolaterally and anteromedially to the body wall anteriorly in this segment; an extremely arge pair of tufts in V sending composite dacts to the pharynx and additional tong composite duets fur forward to the vicinily of intersegment $1 / 2$. Very small pharyngeal tufts in IV (H, PI) a

Fig. 5. Germascolex mirabits. Genital field. holotype Jgz.
rudimentary tuft on each side in $\mathrm{HI}(\mathrm{H})$; none detectable in $\mathbf{1 1}(\mathrm{H})$ oo in 11 and $111(\mathrm{PI})$. Lateral bands of astomate, exonephric micromeronephridia posterior in their scgments in VII-XII(H), XIII(PI) then becoming progressively more anterior until in XV(P1) or XVI(H) they are attached to the anterior seprum, the bands especially denso in XIIIXVA: in the anlerior intestinal region with approximately 13 compact astomate micromeronephridia on each side dependent from the anteriar scptum but exonephric. Caudally with approximately 8 enlarged nephridia on each side, closely adjacent to and encircling the intestine from idmost the middorsal line laterally; each with a large, long-stalked preseptal funhel; these nephridia sending separate ducts medially to unite as a common duct which passes diagonally, posteromedially, benteath the dorsal blood vessel on each side, to enter the body wall posteriorly in the seg, ment; the diagonal duct on each side communicating by a narrower duct with that of the
next rufjacent segments. Numerous axtomate, apparently exonephric, septal micromeronephridia present it the parietes, surrounding and concentric with the enlarged, enteroncphrio nephridia ($\mathrm{H}, \mathrm{P} 1$). Sperm funnels weakly iridexcent in X and XI. Seminal vesicles raccmose. in XI and XII. Ovaries composed of several partly united strings of targe oocytes. Flattencd saclike structures in XIV may be ovisacs. Prostates tongue-shaped, restricted to and passing laterally in XVIII, incised once to twice no as 16 suggest a modified. depressed tubular form (H. P1): with a narrow eenirul lumen throughout which has epithelium-lined side branches (sehizoparatype): the muscular duct widening significantly towards the pore and joined near its ental end by the vasa deferentia, these mate ducts rimning separately from cach other in the thick muscular wall of the prostate duct near the lumen of the latter. but not penetratine the lining epithelium to join the lumen until the miale pore is almost reached (schizopuratype); copulatory bursa absent, Spermathecae 2 pairs. in VIt and VII, the single diverticulum subspherical, sessile. with several internal inseminated loculi; the stuct inflated, spindle shaped (H, P1. schizoparatype).
Field varation: In 11 clitellate type-specimens, including the holotype, genital markings are in $15 / 16$ (left) in specimen (P10); 16/17 in 6 (5 paired, 1 right): $19 / 20$ and $20 / 21$ in 11 (all paired in 19/20; unilateral right or left in 2 in 20/217: $21 / 22$ in 2 (1 paired, 1 right): and $12 / 23$ in 1 (payred). The male porophores in some specimens are surrounded by a common, medianly narrowing field raised at its edges as a rimilike tumescensce which is closely udiacent to the lateral borders of the porophores

Material exantined: $1 \mathrm{~g} 2,138^{\circ} 10^{\circ} \mathrm{E}, 32^{\circ} 48^{\prime} \mathrm{S}$. Mt. Remarkable, on slopes of mountain in tocky soil covered with animal (wallaby?) droppings, B.J. and T.W. 18.viii.1972-H. PI-10. P1I (schizoparutype): many other uspecimens collected but bot designated typespecimens. Jg1, $138^{\circ} 03 \mathrm{E}, 32^{\circ} 46^{\circ} \mathrm{S}$, Alligator Gorge National Park, under rocks near creek in gorge, B.J. and T.W. 79.viii.1972P12. H. P2-5 (AM); P1, P6 (BM); P78 (SAM): P9-12 and others (BJ).
Remurks: location of the two pairs of spermathecal pores in $6 / 7$ and $8 / 9$ and the configuration of the genital markings readily distinguish G. miratilisy Prom other species.

Gemascolex octothecatus sp. noy,
FIGS 6A, R. 10H, 1; TABI.E 7
Length - $45(\mathrm{P} 11-64(\mathrm{H}) \mathrm{mm}$. w (midclitellar) $=4.7-5.4 \mathrm{~mm}, 3-71(\mathrm{PL}) .84(\mathrm{H})$ (posterior regenerates?), Generally circular in cross section but the ventral surlace somewhat nattened at and anterior to the male genital field. Pigmented purplish brown dorsally, coloriess ventrally, in akooholi each seta in the pigmented areas surrounded by a colorless circular field. Prostomium not canaliculatc (\mathbf{H}) or with weak doesal canalicula (P1), epilobous 1/3(H$)-1 / 2(\mathrm{PI})$, closed by a doep -ransverse furrow but contimuing posterior as an acalte (H) or parallel-sided (P1) tongue which almost reaches the first intersegment. First dorsat pore $4 / 5$. Selac of each side more closely spaced laterally than dorsally and ventrally: ab) significantly larger than be; the setae of the ventral couple more conspicuous than others. Numbers of setac per segment 20 in XII/H, $\mathrm{PI}): 18(\mathrm{P} 1)-19(\mathrm{H})$ in $\mathrm{XX}: 26(\mathrm{PL})-28(\mathrm{H})$ fitteen segments from the caudal end; a linies straight, z lines irregulat: a wide ventral and dorsal break in the setat cirolet present throughout. Setac x, h and c absent in XVIIT in the prostatic holotype but present in the aprostatic paratype 1.

Clisellum $\operatorname{XIII}(\mathrm{H}), \mathrm{XIV}(\mathrm{P} 1)-\mathrm{f} / 2 \mathrm{X}$ Vff dorsally ($\quad 31 / 2-4$ 1/2 segments) annular trut ventrally (H) weakly developed in XIIt and apparemtly not developed in XVII, interseg. mental furrow 13/14 well demarcated ventrally (though not darsally), the succecting furrows weakly indicated: dorsal pore 13/14 well developed. $16 / 17$ partly pochided, the others obliterated; setae a and b clearly visible. the remainder only sporadically visible (A) Male pores mimute, on stump-like, annulated pseudopenes in tad of XVIII. which are stongly protuberant from gaping slit-like surrounding basal areas which may represent the male pores before eversion of the pseudopenes. the basat slits each borne on a large annulated porophore; the bases of the pseudopenes 6.4 $\mathrm{mm}, 0.35$ circumference apart (H). Male purcs and porophores totally absent in paratype 1 . Accessory genital markings paired with porclike centres, presetally in X in b; in 16/17 centred in or slighty median of b; in $17 / 18$ and $18 / 19$ slightly tateral of $b_{;}$and in $19 / 20$ and $20 / 21$ slightly median of $h(H$, see Field Variation). Spermathecal pores 4 pairs, in 5/6, 6/7, 7/8 and 8/9: in a straight line on each side but between setal tinex. 5 and 6 in $5 / 6$. and between 6 and 7 in 8/9, distinedy
table 7
Intersetal disimerer-in Gemascolex octothocatus

Sekioten XIT	tnm					siandurvized as \% of circumterence			
		sb	24	4				sy	\checkmark
Hololypa	17	10	0.7			95	5.6		
Paratype I	11	0.8	0,6			8.2	S.f.		88
Mear						8.9	5.6	4.1	11.5
foertal/ath						16.	1.0	9.8	2.1
Sewnent XX									
Hotover	1.7	11	1.0		18.5	9.2	6.0	5.6	14.0
Pafaiyer 1	1.1	0.8	0,6	1/3	34.1	7.1	5.7	4.3	9.2
Mtesn						8.5	5.7	4.14	11.6
lnterval/ab						1.3	1.0	154	2,1

visible small whitish oval papiltae confined to the intersegmental furrows; in $8 / 9,7.7(\mathrm{PL})-$ $99(\mathrm{H}) \mathrm{mm}, 0.57(\mathrm{H})-0.58(\mathrm{P} 1)$ circumference aparn, i.e. slightly dursal (H, PL),

Stroagest septa $11 / 12-13 / 14$, moderately strong. Last hearts in XIII. Supra-oesophageal vessel in VII $1 / 2$ VIII-1/2XIII, well developed. Heans in V. VII-IX dorsoventral only, though still valvular, giving branches to septa and bolly wall. onlike the more posterior fiearts. Gizzard in VI. Intestinal origin XVII; ia very low. fairly broad dorsal typhlosole commencing in XIX. Nephritia: a pair of latge tults with many spiral loops in each of segments. 11-V, increasing in size posteriad, to very latge in V; the tufts in II and III sending temposite ducts forward in common to juin the hody wall near the buccal cavity and into the peristomium where they possibly enter the buccal cavity; those in IV and V discharging into the pharynx. Meronephridia parietal and apparcntly exoncphric in transverse bands in VI posteriorly; caudally, from approximately the 50th segment with 8 or more long-necked preseptal funnels on each side and with the median 2 of these stomate nephridia enlarged as megameronephridia the 4 of which lie on the dorsial surface of the intestine and send their ducts to the intestinal wall; the two ducts witiong on each side of the dorsal vessel, and in continuity with those of neighbouring segments: the longitudinal duct apparently but not certainly opening into the intestine posteriorly in each segment, Laterally the nephridia become progressively smaller, though each reJains a preseptal funnel; they are dependent from the anterior septum and some at least send ducts to the roof of the intestine and are apparently also enteronephric. Elongate lobed testes and large complexiy folded, pearly but not iridescent sperm funnels in X and XI; 2 or 3 paiss of moderatety large sacciform seminnl yesicles in $\mathrm{XX}(\mathrm{H})$, XI and XII ($\mathrm{H}, \mathrm{P} 1$). Prostates large, broad lobed structures in
XVII)-XXI (ILft), -XXII right), each deeply incised taterally and less so medianly by the septa; the Ω shaped muscular duct entally narrow. widening struggly and uniformly ectalwards but facking a lerminal bursa; vas defereas joining it near its junction with the gland (H). Large, paircd, low internal glandular masses in XV1-XX1 corresponding with externat accessory genital markings (H, PI). Prostates wotally absent from paratype 1 although the specimen is mature; tetal portions of vasa deferemia not observable. Ovaries (bushy with many large oocyies (P1) or poorly developed (H) and funnets in XIIL, accompanied medianly by sacs of onknown function: sacs on the anterior septum of XIV may be ovisacs, Spermathecae 4 pairs. diverticulunr single, elongate clavate, uniloculate, shorter (PI) or longer (H) than the spermatheca, somelimes coiled.
Field variution: Of the 6 type-specimens, only the holotype has male pores; 3 of the paralypes dissected, I of which is longer than the hololype and fully clitellate, have no prostate glands. Paired accessory genital markings anleriorty in X in b lines are invariably present as are paired markings in 16/17-19/20. They are present in 20/21 in paratypes 1 and 2 , as in the bolutype. Additional paired markings are present in $15 / 16$ in paratype 3. A rudimentary marking is present unilaterally on the right, in $12 / 13$ in paratype 4 . In specimens lacking inale pores the genitat markings in $13 f$ 18-18/19 are slightly more median than in the prostatic bolotype, lying in $a b$ nearer b. rather than in b lines.
Material examined: LIL, $140^{\circ} 49^{\circ}$ E, $37^{\circ} 28^{\prime} \mathrm{S}$,
11 km S of Penota in eucalypis fringing
pitus radiate, B. 1 , and T.W., 15 viiii-1972-
P1, Lml, $140^{\circ} 55^{\circ} \mathrm{E}, 38^{\circ} 01^{\prime} \mathrm{S}, 27 \mathrm{~km}$ from
ML. Gambier along roal to Nelson, in sandy loam under grass among wattles and gums with some herbaceous garden escapes, $B J$. and TW. 15, viii. $1972-\mathrm{H}, \mathrm{P} 2-5, \mathrm{H}, \mathrm{P} 2$ (AM): P1 (BM): P3 (SAM) : P4 \& 5 (BJ). Remarks: G. octorhecatus resembles G. dorsalis (Eletcher), from Vietaria, in possessing four pairs of spermathecae and in the dorsal location of their pores. A further similarity between the two species is the pair of genital markings at the anterior margins of \dot{X} and XVII. G. dorsalis differs, however, in zestriction of genital markings to these locations in all localities from which it has been reported (Fletcher 1888b; Spencer 1892; Michaelsen 1907b); and in the more torsal location of the

Fig. 6. Genital fields of: $A \& B, G$. octothecatus, A, holotype, Lm1; B, paratype 1, I.11, C, Perionychella (P.) inconstans, holotype, $\mathrm{Mj1}$.
spermathecal pores. G. similis differs from ii octolhecatus in the smaller number of spermathecal pores, restriction of accessory genital matkings to $\mathrm{X}, 16 / 17$ and 18/19, and the greaier development of these markings. These differences of G. octothecarus from G. dorsalis and G. simills are minor compared with thase betwcen other species of the genus but union of the three eatities in G. dormalis nevertheless does not appear justified,

The prevalence of individuals lacking male erminalia suggests that G. ocsolhecatus is commonly parthenogenetic.
Gemascolex similis sp. nov,

FIGS 3B, 10), K; TABLE 8

l.engli $=40 \mathrm{~mm}+$ (posterior amputee), w (midclitellar $)=4,5 \mathrm{~mm} . \mathrm{s}=$? . Pigmented, purplish brown, dorsally. Circular in cross section. Prostomium epilobous $1 / 3$, elosed Preclitellar setac large, postelitellat indistine, setae of a side more widely spaced dorsally and ventrally than between, decreasing in size dorsally: $a b$ slightly wider than $b c$ throughout. Numbers of setiae per segment 18 in X11 and XX, 20? (indistinct) in XXXY; a lines straight, z lines irregular throughout; a wide ventral break evirient throughout; dorsal break wider and clearly visible anterior to the clitellam, poorly delined behind it owing to minuteness and irregulatity of the setae: a and b absent in XVIII, c and d faintly visible on the lateral face of the propophore.

Cliteflum rudimentary, apparently occupying XIV-1/2 XVII (-3 1/2 segments), not sufficiently developed to obscure dorsal pores, intersegments or setae. Male pores mimute, on stump-like, annulated pseudopenes, median to c of XVIII; a hasat circumferential groove around each pseudopenis may represent the margins of male pore before eversion of the mseudopenis, this basal groove is jtself borne on a large ammulated poropbore; the centres of the hases of the pseudopenes $4.8 \mathrm{~mm}, 0.33$ circumference, apart, Accessory genital markings prited subcircular, buthorlike sharply demarcated tumescences, each differentiated into a peripheral rim and flat or depressed cenIrai area, filling the presetal part of X in b; in $16 / 17$ and $17 / 18$ in ah, filling the space between the setal arcs of the adjacent segments, those in $56 / 17$ moze median than those in 17/18. Female pore unpaired. midventral in XIV, presetal in an clliptical fient. Spermathecal pores 3 pairs. in $6 / 7,7 / 8$ and $8 / 9$, inconspicuons whitish ellipses, in setal lines $5-6$,

TABLE 8
Intersetal distances in Gendascolex summilis

Ssericat XIIHolntypeIncervaliab		ats	mm			standardized am \% of elfeuntifence			
				7	4	山			\%
	17	0.9	0.9	2.1	14.8	32.1			
						2.0	1.0	1.1	2.3

$4-5$ and 5-6 respectively (right side, not certainly visible externally on left side); 9 mm , 0,54 circumference apart, i.e. slightely dorsal.

Strongest septal $10 / 11$ and $11 / 12$, very stuong; 8/9, 9/10, 12/13 and 13/14 also strong. Last hearts in XIII. Supra-cesophageat yessel in IX-1/2 XIII; moderately developed. Gizzard in V1. Intestinal origin XVHI_{1} a very low sidgelike dorsal typhtosole commeucing in approximately XVIII Nephridia: paired tufts in $11-\mathrm{V}$, increasing posteriad from small to large; those in II and III discharging exonephrically anteriorly in their respective segments; those in IV apparently, but not certainly, discharging into the pharynx: those in V each with a wide composite (multiple) duct running anteromedially to the pharynx wall in 111. Numerous exonephric mictomeronephridia mostly in posterior bands in their segments in VI-XII; mosily presetal in XIII; anterior and pusterior bands of micromeronephridia in XIV-XXI; Hereafter mostly anterior in each segment; no nephrostomes present but pasterior end missing behind the 40th segment. Sperm funnels iridescent in X and $\mathrm{XI}_{;}$seminal vesicles saccular, in XI and XII; a pair of small sacs on the anterior wall of X resemble seminal vesicles but in this location presumahly do not have a seminal function. Ovaries with several chains of large oocytes, small flatened sacs on each side of them; ovisacs absent. Prostater large flattened lobes. wilh irregular, lobed, moderately deeply incised margins, restricted to but greatly enlarging XVIIS; the toctuous muscular duct gradually but censideratly widening through jts length to the pore. Latge intracoclomic glandnlar makser are associated with the accessory genital markinge Spermathecae 3 pairs, approximately uniform in size; diverticulum (inseminated) singte. digitiform, but that of the Teff sperruatheca of IX with a triloculate terminal dilatation.

[^1]differs from both the falter species in having only 3 pairs of spennathecae. Its accessory genital markings have the same distribution as in G. dorsalis, jhough belter developed, but it differs from this species in the unpaired female pore and absence of seminal vesicles from IX. in addition to the smaller number of spermathecse and their more ventral location relative to setal lines. Differences between the three species are minot relative to those between most other species of the genus but union of the three entities under G. dorsalis at present appears unjustified.
Gemascolex stirlingi (Fletcher, 1888a)
FIGS 8A, B, 10L. 1IG; TABLE 9
Perichacta stirlingl Fletches, 1888a; 395-398; 1889b: 1017-1019.
Megascolex stïlingi Beddard, 1895: 373. Micbaelsen, 1900: 222. Jamiesorr, 1971b: 95. Fidmonds \& Jamieson, 1973; 23.
Mscguscole. Reteheri Shabnon, 1920: 301-313, PL. XXVII-XXXI.
[thon] Megasculex fletcheri Michaelsen, 1907b: 2 I .
Length $-300 \mathrm{~mm}, w$ (midelitellar) $\equiv 12$ $\mathrm{mm}, \mathrm{s}=258$ (Specimer 1. Specimen 2 is a posterior amputee). Pigmented dark olivebrown dorsally. Circular in cross section. Prostomiunt deeply bisected by a dorsal canalicula, epilobous $1 / 2$, closed, but peristomium with numerous longitudinal furrows all round so that prostomium might be considered epitanylobous; transverse furrows render peristomium and prostomium manmilate. First dorsal pare 4/5 with, in specimen 1, an imperforate rudiment at 3/4. Setac well developed ventralty to midlaterally, rudimentary further dorsally; $a a \approx a b$ but setac progressively more closely spaced dorsally. Numbers of setie per segment not or only approximately countable, 22 in XII, 20 fifteen segments from the catudal end in specimen di a lines straight, z lines irregular. a wide ventral and wider dorsal break in the setal circlet present throughont. Setac a, b and c absent in XVIII. Few intersctal distances measurable.

Critellum XIV-XVII ($=4$ segments). Male pores transverse slits with low but tumid lips, shortly median of setal lines c of XVIIT, the pores $6,43-6.71 \mathrm{~mm}, 0.20-0.21$ circumference apart (specimens 1 and 2): each low porophore lying in a depression and accompanied laterally by à raised slightly Jarger transverse ridge; the border of the segment immediately in front of and behind the pore also thickened to form a sarrow callosity (specimens 1 and 2) or a small intersegmental tubercle present

TABLH H
Intersentl itstances in Gemascolex stirlingi

	AA	$m_{i t}$	4	standardized as 3 of cireumference $32 \quad$ ab	
Serment XIf ${ }^{\text {a }}$ a					
Spiscmen 1	2.6	1.2	28.0	7.1	4,1
Socelmes 2	1.9	1.1	28.0	6.6	4.1
Merin				6.9	4.7
Intersal/sb				1.6	1.4
Specimen XX					
Speatmen 1	26	12	25.0	7.3	15
Spectmen 2	1.3	1.1	35.0	6,5	3,3,
Mcan				-5,9	3.4
Interval/ab				2.1	19

in front of and hehind each pore at $17 / 18$ (specimen 3). Paired eyelike accessory genital markings in 16/17, centred in $u b$ nearer b, and in 19/20-22/23 (specimens 7-3), those in 19/20 ecnired slightly median of c, those in $22 / 23$ slightly lateral of c (specimens 1 and 2) or those in 19/20-22/23 all in be (specimen 3): the markings with raised whinish central area.

Paired postsetal oval genital markings with porelike contres immediately in front of and slightly lateral of but contiguous with the spermathecal pores, in VI, VII and VIII (specimens 2 and 3). Spermathecal pores 3 pairs, in $6 / 7.7 / 8$ and $8 / 9$, largo pores with wide lips forming an ellipse, in the 5th to 7th setal line; the pores, at $8 / 9,13.57-14,43 \mathrm{~mm}, 0.44-0.45$ circumference apart (specimen 1 and 2).

Strongest septa 9/10-12/13, very thick. Last hearts in XIII. Supra-oesophaycal $1 / 2$ VIIIXIII, well developed. Gizzard in V1. Intestinal origin XYII, typhlosole rudimentary, a slight thickening of the roof of the intestine middorsalty, first discernible in XXVI. Nephridia: paired tufts with composite (multiple) ducts in II, III, IV and V, all large but increasing in size posteriorly, these in V very large; the tufts in IV and V open into the pharynx: the ducts of those in Ill appatently join the buceal cavity though some ducts open at intersegment 1/2; whercas those in 11 appear all to be exonephric in the vicinity of $1 / 2$ (specimens 1 and 2). Dense lateral bands of nunierous (etonephric?) micromeronephridia lie in VI-XI on the parietes at the posterior septums in XII-XIX nephridia are anterior as well as posterior in the segment, being especially dense in XIII-XVI: in XX posteriorly they aro anterior only in the segment. Caudally with numerous large meronephridia on each side, adherent to the posterior faces of the septa on the intestine and body wall, each with a large single preseptal funnel which
has a long inflated neck, the nephridial ducts difficult to trace but apparently (all?) opening into the intestine (specimen 1).

Sperm funnels iridescent in X and XI , Seminal vesicles racemose, in XI and XII; a further pair of similar but smaller sacs on the anterior septum of XIII (specimens 1 and 2) median to the ovaries (1) or separate ovaries not developed (2), Ovaries consisting of many altervated chains of large oocytes (specimen 1). Large sacs on the anterior septum of XIV may be ovisacs but show no loculi (specimens 1 and 2). Prostates tongue-shaped, lobulated and incised, restricted to XVIII, the glandular part passing directly laterally, with slit-like central lumen the greatest width of which is only about one teath the width of the gland, i.c. gland tubuloracemose; the muscular duct S-shaped, with an abrupt bursa-like terminal dilatation. White paired glandular masses in each of segments XVII, XIX-XXIII, correspondjing with the external genital markings, large with the exception of those in XIX which correspond with the rudimentary markings in 18/19. Similar paired masses on the

body wall in VL, VII and VIII in line with the spermathecal ducts; and corresponding with the exlernal genital markings. Spermathecae 3 pairs, in VII, VIII and IX, increasing in size posteriorly; diverticulum (ioseminated) single, clavate, uniloculate (specimens 1 and 2).

Field variation; Specimens 1-4 have a circular genital marking anterolateral to each spermathecal pore (with sporadic omissions) whereas in specimen 5 the marking is posterolateral, in the succeeding segment. Genital markings at $16 / 17$, at or near $17 / 18$ and $18 /$ 19, and in 19/20-22/23 are constant in all specimens and are paired with the exception that that on the left in $22 / 23$ is absent in specimen 3.

Material examined: $\mathrm{Jg} 1,138^{\circ} 03^{\prime} \mathrm{E}, 32^{\circ} 46^{\prime} \mathrm{S}$, Alligator Gorge National Park, under rocks near creek in gorge, B.I. and T.W., 19.viii. 1972 -specimens 1 and 2 . Jg2, $138^{\circ} 10^{\prime} \mathrm{E}, 32^{\circ} 48^{\prime} \mathrm{S}$, Mt. Remarkable, under moss in soil pocket in scree on mountain side, B.J., 17.viii.1972-specimen 3. Jh1;

Fig. 7. Genital fields of: A, Gemakcolex walkeri, holotype, Jī. B, G. neymani, Warren Gorge specimen,
$138^{\circ} 18^{\circ} \mathrm{E}, 33^{\circ} 05^{\prime} \mathrm{S}, 21 \mathrm{~km}$ from Gladstone aloug road to Port Augusta, in red loam among sed gums by roal, $B / 1$ and $T \mathrm{~N}$. 18. $41 i 1.1972$-specimen 4. Ji2, $138^{\circ} 42^{\prime} \mathrm{E}$, $35^{\circ} 0 \mathrm{o} / \mathrm{S}$, Craters, near Adelable, R.A. $24 \times \mathrm{x} .1971$-specimer 5 . Specimen] (BM), specimen 3 (AM): specimen 2 (SAM); specimen 4 and 5 (BJ).
Remurblv/Location of tbe genital markings in $16 / 17$ median to the male pores, while those in $17 / 18-22 / 23$ ute approximately in line with these pores, permils ready identification of G. vzirlingh.
Gemascalex walkeri sp. nov.
FigS 7A. 10M, 11H: TABLE 10 .
Length $=42 \mathrm{~mm}_{1}$ w (midcitiellar) $=3$ $\mathrm{mm}, \mathrm{s}=107,111(\mathrm{H}, \mathrm{Pl})$. Pigmentiess in afeohol. Circular in cross zection. Prostomium epitanylobous, posteriorly convergent, narrow, First dorsal pore 4/5. Schac $a b$ and $h c$ wide throughout and approximately equal, being slightly wider than other interselal disiances of a side anterior to the clitellum; posterior to the clitellum $a b$ and $b c$ remain the largest intervals bur spating of other sefae becomes very iriegulan. Numbers of setac per segment 14 in XII and $\mathrm{XX}(\mathrm{H}, \mathrm{P} 1), 18(\mathrm{Pi})-22(\mathrm{H})$ fifteen segments from the caudal end; a lines straight throughout; z lines straight in the forcbody, ìregular in the hindbody; a moderutcly wide ventral break visible throughout; a dorsal break aliscernible in the forebody but not present in the hindbody. Setac a and b absent in XVIII.

Clitellum rudimentary, some annular modification on XIV-XVI. Male pores on hemispheroidal porophores in XVIIT: the pores $2.29(\mathrm{P} 1)-2.78(\mathrm{H}) \mathrm{mm}, \quad 0.30(\mathrm{P} 1)-0.34(\mathrm{H})$ circumference apart. Paired eyclike ventrally conjoined yenital markings in intersegments 17/ $1 \mathrm{~K}-24 / 25$, converging posteriorly from $a b$ in 17/18 to a in $24 / 25$ (H) see Field Variation). Spermathecal pores 1 pair, ventral in 5/6, small elliptical papillae in setal lines e; $2.43(\mathrm{H})-2.64(\mathrm{P} 1) \mathrm{mm}, 0.34(\mathrm{P} 1)-0.38$ circumference, apart. Sirongest septa 10/11 and 11/-12, moderately strong. Last hearts in XIII. Supra-oesophageal traced in IX-XIIf. Gizzard in V. Intestinal origin XVII; a decp laminar dorsal typhlosole commencing in XXI or XXII hut continuous as a rudiment forward into XVIII, Nephridia: Paired meronephric tufts in II. III. TV and V with composite ducts opening into the pharynx; very large in V . decreasing in size anteriad (H, P1), Traneverse bynds of numerous astomate, mieromero-

TABLE 10
Imerselal ilistances in Germiscolex walkeri

Seatrent XII	a1	mim			0	standaraized as 8 c of cricumtercrice			
		ab	27	$z z$		23		${ }^{\prime 2}$	\geqslant
Holotype	0,8	0.6	0.6	0.7	7.7	10.5	88	7.9	9.1
Paraty 1	0.6	0.8	0.5	08	7.6	10.5	7,0	6.1	10.7
Mean						10.6	7.2	65	9.9
Interval/ah						1.4	1.0	0.9	1.3
Segmeot XX									
Holntype	0,8	0.7	0.7	0.6	8.0	10.1		8.7	79
Paratype 1	0.8	0.6	0.6	0.8	7.9	98.	2.6	2.4	9.8
Mean						10.0		7.6	8.3
\|nterval/ab						12	T.U	1,0	10

nephridia exonephric on the body wall in VIVIIt: associated in IX-XV with the posterior septa. io XVI with the anterior and posterior sepla, and in XVII and succeeding segments with the anterior septac, all septal nephridia lacking detectsblc parietal ducts (enteronephric?) (H). Caudally, from aboul segment 70, with fewer, larger nephridia. approximately 5 on each side, each with a preseptal fumel, the nephridial ducts running on the posterior face of the septum to join the ventrolateral wall of the intextire, some suggestion of : longitudinal duct joining those of adjacent segments seen on the side of the gut but tequiring confirmation; postseptal sephrostomes absent: xome astomate, parietal and apparently exonephric mieromeronephridia present in caudal segments in addition to the stomate nephridia (H_{3} P1) Sperm funncls weakly iridescent in X and $X 1$: seminal vesicles racemose, almost sacciform. in XI and XII. Ovaries bushy with several strings of large oocytes: smull sacs in XIV may be ovisacs. Prostates Mattened, Icaflike, with deeply incised margins and a groovelike 'midrib'; restricted to XVIII; duct U-shaped, bent medianwards, the ectal limb greatly thickened: vas deferens joining the ental limb at midiength. Spermathecac one pair, in VI, diverticulam (uninseminated) single, digitiform, uniloculate, slightly longer than the ampulla ($\mathrm{H}, \mathrm{P} 1)$ Field variation: In the sexual, though imperfectly clitellate types (holotype and 4 paratypes), genital markings are consistently present in the seven intersegmeris 17/1823/24 but those in 20/21-23/24 may be sporadically ahsent unilaterally. Oniy P1 agrees with the holotype in having a marking (unilateral, right) in 24/25.

Material examined: Ji1. $138^{\circ} 38^{\prime} \mathrm{E}, 35^{\circ} 00^{\prime} \mathrm{S}$,
Betair National Park, dry grass and eucalypt sclerophyll, T.W., 21.viii. 1972-H1 Pl-4 $\mathrm{Ji} 2, \quad 138^{\circ} 42^{\prime} \mathrm{E}, 34^{\circ} 58^{\prime} \mathrm{S}$, ML Lofly, it cucalypt woodland, BI. and T,W,.

Fig. 8. Gemascolex stirlingi. Genital fields of: A, specimen $1, \mathrm{Jg} 1 . B$, specimen $3, \mathrm{Jg} 2$.
16.viii.1972-P5 and 6. H, P2 (AM); P1, P3 (BM); P4 (SAM); P5 and 6 (BJ).
Remarks: The single pair of spermathecae, restricted to VI, distinguishes this species.

Genus SPENCERIELLA Michaelsen, 1907a emend.
Terrestrial, Body circulat in cross section. Prostomium epilobous; peristomium usually bisected by a longitudinal furrow ventrally which is more conspicuous than other grooving which may be present. First dorsal pore $4 / 5$
or 5/6. Selac numerous in each segment. A pair of combired male and prostatic pores on XVIII. Clitellum annular, anterior to $17 / 18$. its intersegments and dorsal pores ohscured at maturity but setac visible. Segmental accessory genital markings present. Female pores paired, in XIV, anteromedian of setae a. Spermathecal pores in 2-5 intersegments ending in $8 / 9$, or a pair in $7 / 8$ only; single or paired.

Dorsal blood vessel single, continuous onto the pharynx, Last hearts in XII or XIII, those in X posteriorly latero-ocsophageal, each aris-
ing from the short supra-desophageal vesset and from the dorsal vessel. Subneural vessel absent. Gizzard large, in V. Thtee ar four pairs of well-defined extramurat glands, typically with olany internal septa, dorsolateral on the oesophazus, in X, XI-XIII. Typically with a latero-oesophageal vessel on each side supplying the calciferous glands. Intestine commeneing in XV or XVI or (S. halli) XVII typhlosole a low dorsal ridge or absent; carca and गuuscular thickening absent, Excretory system meronephric. Phoryngeal tufts present anteriorly: succeeding segments with astomate, exonephric meromeronephridia. Caudally (always?) with several nephrostomes on each side in each segment or with all but the median-most funnel reduced; with (always?) some at least of the meronephridia enteronephric and interconnected ty a longitudinal paired excretory duct (urcter). Testes and funnels in \mathbf{X} and XI; testis-sacs absent: seminat vesicles in IX and XII,

Ovaries and funnels in XIII; ovisacs present. Prostates tubuloracemose (partly or wholly linear with central Jumen) or rucemose (here bipartite); vasa deferentia joining their muscular ducts near the glands. Spermathecae each with one or more flavate, uniloculate diverticula,
Type-sptecies: Diporochteta notabilis Spencer, 1900.

Distribuilon: South Australia, Victoria and Tasmania, New Zealand?

Checklist of Species

* New eombinations in Spenceriella.

South Austratia:

1. Spenceriella imparicystis sp. noy.
2. Spenceriella penoloensis sp. nov.

Vietoris:
3. Perichaeta irenthit Spencer, 1892
4. Perichneta halli ${ }^{ \pm}$Spencer, 1892
5. Perichaetd hoggi+ Spencer, 1892
6. Dipmowhacta notobilis Spencer, 1900
7. Perichaefa rubri Spencer, 1892
8. Perichaeta stceli* Spencer, 1892
9. Perichata sylvatica* Spencer, 1892

Tasmamia:
10. Perichaeta tasmarica* Spencer, 1895

Species incertae sedis:
11. Megascolex antarctica Baird, 1871
syn. Diporochacta shakespenri Benharn. 1906 (New Zealand)
12. Spencerrella argillie 1 ee, 1959 (New Zealand)
13. Diporochata gigmted Benham. 1906 (New Zealand)
14. Diporochacta muplestoni Spencer, 1900 (Victoria)
15. Sipenceriella pallida Lee, 1959 (New Zealand)
Rennarks: Jamieson (1972) described a neotypie specimen of the type-species, Spenceriella northifis. The specimen was in very poor condition and it was only possible to say of the several rows of meronephridia that a preseptal funnel was seen in one segment on the nephridium nearest the nerve cord. This suggested memhership in the tribe Dichogasitini, it group characterized by a single preseptal funcl on the medianmost nephridium on eath side in caudal segments. Threc other species. of which material has been examined by the author, are clearly congencric with Spenceriella notahflis from their general morphology and particularly from the form and arrangement of extramural calciferous glands. These are the two new species S. imparicystis and S. penolueusis and a species provisionally placed in Megascolex by Inmisson, 1974. Periachaeta lasmanica Spencer. 1895, The two South Australian species have multiple cauldal nephrostomes with enteronephry and therefore show that Sperceriella must be consigned to the tribe Megascolecini. Only the median funnel on each side was identified with certainty in the now material of P. rasmanion hut what appeared to be vestigial fuonels were present laterally to this and caudal enteronephry was demonstrated for the median nephridium. This suggests a secondary approach to the dichogastrin condition in this species. The other species included above in Spenceriella agree closely with the three studied in general morphology, inclading the arrangement of caliciferous glands, though details of excretory and vasesiar syslems are unknown. Occurrence in one and the same genus of linear tubutoracemose or biparfite prostates with branched ducts, further confirms the author's contention (Jamieson 1971a) that the form of prostate glands has only very secondary importance in the classification of megascolecids, contrary to the view of Gates (1959).

Other species included by former workers in Spenceriella are listed by Jamieson (1972: 73). Of these Perichaeta lateralis, tentatively included by Michaelsen 1907a, is here placed in Gemascolex. The remaining species pre-
viously included are treated above as incertae sedis because, though not placeable in Sponcericila as bomogenenusly defined abore, they are not ot prescnt placeable elsewhere without premature encetion of new genera for their reception. Megascolex antarctica placed. is Diporochaeta shakespeari, in Spenceriella by Mishaelsen (1907i) deserves separate comment. From its, albeit inadequate descriptions this conforms sufficiently closely with the above generic definition (including calciferous glands in XI-XIII) to conceivably be congeneric with Spenceriella notabilis but litue is known of its nephridia beyond the existeace of hands of meronephridia. Its peregrine distribution in Now Zealand and its islands makes an Australian origin of this species or an ancestor conccivable.

Spenceriella imparicystis sp, nov.

FIGS 9A, 10N; TARLE 11

Length $=44(\mathrm{H})-45(\mathrm{PI}) \mathrm{mm}, \mathrm{W}$ (midclitellar) $-2.8 \mathrm{~mm}, \mathrm{~s}=107(\mathrm{P} 1)-122(\mathrm{H})$. Pigmentless in alcohol Prostomium not canaliculate, epilobous $1 / 2(\mathbf{H})-2 / 3(\mathbf{P 1})$ open but with tho weak transverse furrows anterior to its posterior limit. First dorsal pore $4 / 5$, but an imperforale rudiment at $3 / 4$. Setac subequally spaced: 24 in $\mathrm{XII}, 22(\mathrm{H})-23(\mathrm{PI})$ in XX, 22 caudally; a lines straight, z lines irregular; a ventral break appreciable throughout; a dorsal break present only in some anterior segments. Setae a and b absent in XVIII.

Clitellum weakly developed, $1 / 2$ XIII-XVII (4 1/2 segments), dorsal pores, intersegments and setae retained (H ; not developed in P1). Male pores quadritadiate apertures in $a b$ of XVIIL. each at the centre of an oval papilla in a very strongly protuberant paired porophore which fills the segment longitudinally and is wider than long; each porophore almost touching the other: the pores 0.77 (P1) -0.88 mm (H), 0.1 circumference apart. Accessory genital markings paired midventrally conjohed fumescences filling their segments lorgitudinally and with presetal porc-like centres lateral of b in X. and in $a b$ in XVII and XIX. A pair of small glandular areas present posteriorly in each of VII and VIII on each side of the spermathecal pore of the segment. on a inidventral elliptical tumescence straddling $7 / 8$ and $8 / 9(\mathrm{H}, \mathrm{PI}$; see Field Vañation). Spermathecal pores unpaired, midventral, in $7 / 8$ and $8 / 9$, ench continued anteriorly as a short slit bisecting the posterior part of the surrounding tumescence.

TABCE 11
thersetal distances in Spenceriella imparicysils

Sepazm XTI	as	ab				standardized so \% of circumference			
			2)	re		24			22
Hobtyre	0.7	0.3	0.3	0.4	78	9.5	3,5	4,2	sid
Paratypet	0.7	0.2	d. ${ }^{\text {a }}$	0.4	7.4	9.5	3,1	38	5.4
${ }_{\text {Mean }}$ Inicryal/ab						95	3.3	4.0	1.2
Serment XX									
Hiolotyre	0.7	0 J	0.2	0.3	9.9	70			
Patatypel	0.6	02	0.	0.3	8.0	7.9			3.1
Mean						7.4	2.7	2.7	2.8
Interval/ab						2.7	1.9	10	1.0

Strongest septa $9 / 10-11 / 12$, moderately slrong, List heats in XII; those in X-XII latero-oesophageal, each originating from a transverse vessel (calciferous versel) which bounds, and ramifies over the corresponding calciferous gland and receiving (observation from one heart) at its junction with this vessel, a slender connective from the dorsal blood vessel; a continuous supra-oesophageal vessel not demonstrable; the two calciferous vessels on each side in a segment join in the midline below the dorsal vessel, at the dorsal extremuties of the glands high above the oesophagus. Commissurals in VII-IX well developed but dorsoventral only and, unlike the latcro-oesophageal hearts, giving ventrally branches to the parietes. A latero-ocsophageal vessel present on each side median to the hearts, thickest in front of the calciferous giands to each of which it conitibutes a branch. bccoming subocsophageal and subpliaryngeal in front of the gizzard.

Gizzard targe, with anterior rint, firmly musculat in V . extending posteriorly to intersegment 10 11; free oesophagus in IV not as wide as the gizzard. Oesophagus only slightly shorter in VI than tuther posteriorly: conspicuousily vascularized. moniliform hut fairly narrow in VIII and IX; in each of X, XI, XII and XIII bearing a pair of ovoid vertically elongated true calciferous glands, the shori narrow stalks of which join the dorsolateral wall of the vesophagus, the glands lying above the oesophagus and each contiguous with its partiner medianly; each gland with numerous lamellae projecting from the walls and grouped radially around the long (vertical) ax is of the gland, almost contiguous axially but no union demonstrated; each gland, with the exception of the pair in XIII, circumscribed on its outer side by the corresponding heart. Intestinal origin XVI; a very low, inclefinite dorsal ridge commencing in XVII, scaresly justifying recognition us a typhlosole; muscular thickening and

Fig. 9, Genital fields of: A. Spenceriella imparioystis, holotype, I.k4. B, S. penolaensis holotype, 1m1.
caeca absent. Nephridiat a pair of very large tufts with innumerable spiral loops in V sends composite ducts anteriorly to join the wall of the anterior region of the pharynx (enteronephric); much smaller tufts in IV are not certainly exonephric; while aggregations of nephridial tubules in II and III are exonephric, via sheaves of ducts, at the anterior margins of their respective segments. In the anterior intestinal region with numerous parietal asto-
mate, exonephric, micromeronephridia. Caudally with several enlarged ncphridia on each side, each with a single (preseptal?) funnel. Lateral nephridia exonephric; more median nephridia contributing their ducts to a common transverse medianly directed duct which joins the dorsal surface of the intestine shortly lateral of the dorsal blood vessel; a longitudinal duct which apparently connects these segmental nephridial ducts visible running through
some candal segments (H, Pl). Sperm funnels iridescent in X and XI. Ovaries slender, pinnate, with large oocytes. True ovisacs containing oocytes in XIV. Prostates with a flattened laterally directed tongue like portion in XVIII which is joined at approximately mid length by a tortuous, depressed almost tubular portion in XIX, the entire gland oot linear hut having the appearance of derivation from a tortuous depressed tubular gland in which some adjacent adpressed coils have united; vas deferens joining the straight muscular duct where this joins the gland. Spermathecae unpaired, midventral, in VIII and IX; each with 2 (inseminated?) clavate uniloculate diverticula, the two diverticula projecting on both sides of the ventral nerve cord and ome of them passing under it to join the wide spermathecal duct where this enters the body wall (H, PL).
Field variation: In the four type-specimens the accessory genital fields are constant, with the exception that the paired markings in X are absent in paratype 2, probably owing to immaturity. Two immature specimens, not designated types, from locality L12 have genital fields and an internal anatomy which suggests they belong to this species but all genital markings are slightly more median than in the types. The median markings at $7 / 8$ and $8 / 9$ are absent but spermathecae are unpaired midventral at $7 / 8$ and $8 / 9$, the paired segmental markings in X have centres presetal in $a b$; those in XVII are absent but there is a pair in each of XIX and XX presetally and slightly median of a; the male pores are median to a lines.

Remarks: Spenceriella imparicystis is morpholonically very similar to the type-species S. norabilis (see Jamieson 1972), the genital fields in the specimens from locality L 12 , being especially similar. The similarity extends to location of latero-oesonhageal hearts in X-XII with calciferous glands in X-XIII. The unpaired spermatheene in VIII and TX in S. imparicystis clearly distinguish it from S : notabilis which has a pair of spermathecae in VIII
only. The paired spermathecal diverticula are also distinctive. The distribution of calciferous glands and hearts distinguishes it, among other features, from S. penolacnsis.

Spenceriella penolaensis sp, H.

FIGS 9B, 100 ; TABLE 12

Length $=43-54 \mathrm{~mm}, \mathrm{w}$ (midclitellar) $3 \mathrm{~mm}, \mathrm{~s}=79-128$ (H , posieriar amputce?, P1). Pigmentless in alcohol. Prostomium canaliculare, epilobous $1 / 2$, with transverse furrow at 1/4, the lateral grooves contiguing almost to intersegment 1/2. Dorsal pores very large, the first at $4 / 5$. Setac small and dificult to discern, subequally spaced but be significantly wider than $u b ;$ a lines straight, z lines irregular; a ventral break well developed throughout, a dorsal break present except in some caudal segments. Intersetal distances in XX not measurable. Setae a and b absent in XVIII.

Clitellum XIII-XVII, but in XVII present only dorsal to the genital markings. Male pores in ab of XVIII, each a small orifice on an approximately hemispheroidal porophore which is laterally skitted by a tumid zidgc; the pores $0.56(\mathrm{P} 1)-0.88(\mathrm{H}) \mathrm{mm}, 0.05(\mathrm{P} 1)-0.12(\mathrm{H})$ circumference apart but not accurately measurable as body wall is depressed betweert pores. Accessory genital markings alf segmental, not intersegmental; a pair of large tumid whitish pads filling their segments longitudinally, each with ceniral circular area distinct from a peripheral strongly turnid rim, extending laterally of c lines in X and XI, with centres stighlly postsetal and lateral of $b(\mathrm{H}$, PD , and in XVI (right only) (H), XVII, XIX, XX (H, PI) and XXI (paired) (H), with centres slightily presetal and lateral of $b_{\text {; }}$; most genital markings medianly conjoined (see Field Variation). Spermathecal pores 5 pairs, in $4 / 5-8 / 9$, in Δ liness scatcely recognizable externaily; the pores $1.47 \mathrm{~mm}(\mathrm{H}, \mathrm{P} 1)$. $0.15(\mathrm{P} I)-0.16(\mathrm{H})$ circumference apar:

Strongest septa $9 / 10-11 / 12$, moderately strong. Last hearts in XIII, those in X-XIII, each arising from a supra-oesophageal vessel (in X) or from it transverse vessel bounding
table 12
Intersetal disfances in Spenceriella penolaensis.

Sesment $\times 10$	$3 \times$	$n \mathrm{~m}$				siandardized as\% $\begin{gathered}\text { if eltrumferevse }\end{gathered}$			
		no		4	4	${ }^{2}$			22
Holotyne,	0.6					8.7	2.9		
$p_{\text {Pratspe }}$	0.7				11.9	6, 1	1.7	28	19.3
Interval/ab						2,8	2.3		8.9

the corresponding calkiferous gland (tn XIXIII) and receiving a long slender connective from the darsal blaod vessel; otherwise unhranched, Commissurals of VI-EX dorsoveniral only, slender though, like the posterior heate, valvular, but differine from the later in ventrally giving branches to the parictes. Supra-oesophageal vescel not demonstrable as a cortinuous vessel but seen in X and XIIL

Gizzard very large, ovoid but flattened at the anterior wider end. firmly muscular in V, (septum $5 / 6$ exceedingly attenuated) its posterior and extending almost to intersegment 10/11. Oesophagus very short in VI-X hut in each of XI, XII and XIII beazing \& pair of ovoid vertically elongated true calciferous glands, the shor narrow stalks of which foin the dorsolateral wall of the oesophagus, the glands lying above the oesophagus and each contiguous with its partner medianly; each gland with numerous lamellae projecting from the walls and grouped radially around the long (vertical) axis of the gland, several uniting axially, the others almost contiguous but not uniting; each gland circumscribed on its outer side by the corresponding heart. Intestinal arigin XVI; a low irregulat dorsal typhlosole commencing in XXI ; caeca and muscular thickening absert. Nephridia: astomate meronephridia in II looscly aggregated into tufts send sheaves of ducts dorsolaterally to intersegment $1 / 2$, similar aggregations in $\mathrm{II}-\mathrm{V}$ also appear to be exonephric. are adherent to the pharynx and are apparently ut least partly enteronephric, what appear to be pharyngeal duets being demonstrable in PI. Succeeding oesophageal and intestinal segments have each a transverse row of approximately $t 0$ istomate parietal micramenmephridia on each side. Caudalty (P1 and 2) with several small nephrostomes (one to a meronephridium) on each side in each segment, each funnel lying in the segment projecting from its mephridial body near its duct and not preseptal with the exception of the medianmost nephridium which in some segments was seen to have it preseptal funnel. At least some of the nephridial ducts in each segment combine to send a duct to the dorsolateral surface of the intestine; these ducts communicating from segment to scgment by a longitudinal duct on each side which runs on the external surface of the intcstine of several segments where visible but is not demonstrable, and is therefore questionabty continunus, throughout the caudal region. Confiemation of the exact arriangement of the
nephritia of this species is required as unusual difficulty in dernonstrating the structures desscribed precludes certainty that the pharyngeal and all caudal rephridia are enteronephric and actilal openings of the caudal ducts into the intestinal lumen have not been demoustrated. Sperm funnels iridescent in X and XI. Ovaries bushy with many chains of very large nocytes (H, P1) : ovisacs absent (H) of well developed, containing numerous oocytes, on the anterior septum of XIV (PI) . Prostates tubuloracemose. tobulated but linear, the gland folded once and occupying XVIII and XIX, with very nurrow central lumen througbout, surrounded by thick gtandular wallsz the curved muscular duet joined near its junction with the gland by the vas deferens. Penial setae, and internal glands corresponding with the accessory genital markings, absent. Spermathecae 5 par's, diverticulum (inseminated) single, clavate. uniloculate.
Field variation In the eleven type-specimens, including the holotype, paired genital markings with centres lateral to b and sligbtly postsetal are invariably present in X and XI; paired genital markings with centres lateral to b and slightly presetal are invariably present in XVII and XIX, occur in 6 specimens in XX (H , P1-3, 6, 10), and are represented, on the right only, io 2 specimens (H. P6). Female pores are always paired. presetal, 1/3-1/2 aut apart and spermathecal pores are never discernible with certainty externally.

Material examined: L1, $140^{\circ} 49^{\prime} \mathrm{E}, 37^{\circ} 28^{\circ} \mathrm{S}$, 71 km S of Penola, in cucalypts fringing Pirtus radiara, B.J. and T.W, 15.viii.1972-PT-10. $1 \mathrm{~mm}, 140^{\circ} 55^{\prime} \mathrm{E}, 38^{\circ} 0 \mathrm{l}^{\prime} \mathrm{S}, 26 \mathrm{~km}$ from Mr. Gambier along road to Nelson, in sandy foam under grass among wattles and gums with some herbaceous garden escapes. R.J. and TW.. 15.vili.1972-11. P1-6. H. P2-4 (AM); PI, 5, 6 (BM): P7-8 (SAM) ; P9, 10 (BJ).
Remarks; S. penolaensis is distinguished from the type-species, S. notabilis. and from S, Im paricystis, in having only three pairy of calciferous glands, lacking those of X. It dilfers from hoth species in having five pairs of spermathecae and in other respects.

Discussion

The earthworm fauna of South Australia is remarkably impoverishod, though of high specific endemicity. It has been shown above that the total knows fauna in the only Indigenous family, the Megaseolecidae, con-

A

C

K

Fig. 10. Spermathecae (right segment 1 X unless otherwise indicated): A, Perionychella (P.) inconstans, holotype, Hj1. B, Heteroporodrilus shephardi armatus, Li1. C, Gemascolex bursatus, holotype, Jj3. D-F, Gemascolex lateralis; D, specimen 1, Ji2; E \& F, specimen 3, LII (dorsal and ventral views, right VIII), G, Gemascolex mirabilis, holotype, Jg2. H \& 1. Gemascolex octothecatus; H, holotype, Lm1; I, paratype L11. J. \& K, Gemascolex similis; holotype, L12 (J, left VIII; K, left IX). L, Gemascolex stirlingi, specimen 1, Jg1 (left IX). M, Gemascolex walkeri, bolotype, Ji1 (right VI). N, Spenceriella imparicystis, holotype, Lk4 (uapaired, IX). O. Spenceriella penolaensis, holotype, Lml.
sists of a peregrine species of Mieroscolex, a single species questiomably assignable to Perionychella (from Kangaroo Island), a subspecies of a Victorian species of Heteroporo. drilus, eight species of Gemascolex and two species of Spenceriellat in all, ignoring the peregrine Microscolex, four genera with twelve species in contrast with thirteen genera with seventy eight species in ncighbouring Victoria and twelve genera with forty eight species in the small isfand state of Tasmania. All of its genera and two species are shared with Vicforia. South Australia therefore has close zoogeographic affinities with Eastern Australia. Apart Irom the fact that the Kangaroo Island Perionychella shows aflinities with the genus Gratiophilus in Western Australia, there are no generic or specific affinities with the latter state.

The paucity of the fauna of South Australia is correlated with its low rainfall. Λ southeastern coastal wedge, the Fleurieu and Yorke Peninsulas and Kangaroo Island are the wettest parts, with an annual rainfall, with local exceptions, of between $500-750 \mathrm{~mm}$ ($20-30$ inches) bist the remaining coastal region, including the Eyre Peninsula, has only $400-500 \mathrm{~mm}$ (1620 inches) or very much less and the interior is virtually desert. Piekford (1937) in a very thorough survey of the earthworm fauna of South Africa found no earthworms where the rainfall was less than 25 inches and the wetter parts of South Australia are near, often below, this limit. The rainfall in coastal Victoria, in contrast, varies from $500-750 \mathrm{~mm}(20-30$ inches) in the drier west to $750-1975 \mathrm{~mm}$ (30-80 inches) in the east while Tasmania
also has areas ranging from $500-2000 \mathrm{~mm}$ but is generally wetter than Victoria.

Of the regions in South Australia not investigated for earthworms. onfy the Yorke Peninsula appears to be wet enough to yield earthworms and though some additional species doubtless remain to be discovered in the areas from which they have been collected, it is unlikely that furtber collecting will elevate the South Austratian fauna above a total of about twenty species.

It is noteworthy that the great majorily of South Australian species, all in Gemascolex and Spenceriella, have caudal enteronephry, at condition which would appear to be an adaptation for water conservation as urine excreted into the intestine is presumably concenirated by resorption of water in the hind gut. The close similarity of the species within Gemaxcolex, as in Spenceriella, suggests relatively recent speciation from an even smaller fauna.

Acknowledgements

The author is indebled to Mr. G. Gross of the South Australian Museum for the loan of material and to Mr. Ifor Thomas and Dr. S. Edmonds for donation of specimens. Mr. T. Walker is thanked for his indispensable aid in the field and for assistance in mapping and other respects. Thanks are also due to the Electron Microscope Department, University of Queensland for printing the micrographs of setae. All illustrations are by the author. The work was made possible by Australian Rescarch Committee grant no. 239260-R-Zool-ARGC-120.72 and by a Royal Society Nuffield Bursary,

References

Braxb, W. (1871).-Megesceilet anfurcrica, an carthworm from New Zealand. Proc. Linn. Soc, Lond, 11. 96.
BENHAM. W. R. (1906)-Farthworms fram Titile Barrier Isladd. Iruns. N2. Inst. 38, 248.256.
Boardsan, W. (1943).-On a collection of Otigochaeta from the Jenolan Caves District, New South Wiles. Rec. Ausb Mess 21(3), 168178.

Edsuonds, S. J., Jamieson, B. G. M. $19731 .-$ A new genus and specics of earthworm (Mcgascolecidae: Oligochaeta) from South Australis. Trans, k, Soc, S. Aust, $97(1), 23$. 27.

Flemeter, J.). (1888 a)-Notes on Austrulian marthworms. Part III, Proc. Lint. Soc. N.S.W 2 (ser 2), 1887, 375-402.

Fintimek, 5, J. (18886).-Notes on Austealian carthworms. Part IV. Proc. Linn Soc. N.S.W. 2 (ser. 2), 1887, 601-620.

Fietcuer, J, I. (t889a).-Notes on Australian carthworms. Part V. Proc. L.info. Sow. N.S.W. 3 (ser. 2). 1888, 1521-1558.
Fletcher, J. J. (1889b).-Notes on Australian earthworms. Part VI. Proc: Linn. Soc. N.S.W. 4 (ser 2), 1889, 987-1019.

Gaiza. G. E. (1959)-On a taxonomic puzzle and the classification of the eartitworms. Bull. Mus. comp. Lool. Harv, 121, 229-2h1.
Gates, G. E. (1962).-On an exotic earthworm now domiciled in Louisiana. Proc Louisittra Acad. Sci. 25. 7-15.
Jamieson, B, G. M. (1970).-A revision of the Australian carthworm genus Wondwardiclla with descriptions of two new gensra. J. Ziwd, Lond, 162, 99-144

Jamieson, B. G. M. (1971a).-A review of the megascolecoid earthworm genera (Oligochaeta) of Australia. Part I-Reclassification and checklist of the megascolecoid genera of the world. Proc. R. Soc. Qd 82(6), 75-86.
Jamieson, B. G. M. (1971b).-A review of the megascolecoid earthworm genera (Oligochaeta) of Australia. Part III-The subfamily Megascolecinae. Mem. Qd Mus. 16(1), 69-102.
Jamieson, B. G. M. (1972).-The Australian earthworm genus Spenceriella and description of two new genera (Megascolecidae: Oligochaeta). Mem. nat. Mus. Vic. 33, 73-88.
Jamieson, B. G. M. (1974).-The indigenous earthworms (Oligochaeta: Megascolecidae) of Tasmania. Bull. Br. Mus. nat. Hist. 26. 203-328.
Lee. K. E. (1959).-The earthworm fauna of New Zealand. Bull. N.Z. Dep. scient. ind. Res. 130, 1-486.
Michaelsen, W. (1900).-"Das Tierreich", 10, Vermes, Oligochaeta (Friedländer: Berlin.)
Michaelsen, W. (1907a).-Oligochaeta. In "Die Fauna Südwest-Australiens" 1(2), 117-232. (Fischer: Jena.)
Michaelsen. W. (1907b).-Oligochaeten von Australien. Abh. Geb. Naturwiss.. Hamburg 19(1), 3-25.

Pickford, G. E. (1973).-"A monograph of the Acanthodriline earthworms of South Africa." (Cambridge.)
Rosa, D. (1887).-Sui generi Pontodrilus, Microscolex et Photodrilus. Boll. Musei Zool. Anat. comp. R. Univ. Torino 3(39), 40.
Rosa, D. (1890).-Terricoli Argentini raccolti dal Dott. Carlo Spegazzini. Annali Mus. civ. Stor. nat. Giacomo Doria 29, 509-521.
Shannon, J. H. (1920).-On the structure of a new species of earthworm from South Australia, Megascolex fletcheri. Proc. R. Soc. Vict. 32 (n.s.) (2), 302-313.
Spencer, W. B, (1892).-Preliminary notice of Victorian earthworms. Part II. The genus Perichaeta. Proc. R. Soc. Vict. 5, 1-26.
Spencer, W. B. (1895).-Preliminary notes on Tasmanian earthworms. Proc. R. Soc. Vict. 1, 33-54.
Spencer. W. B. (1900).-Further descriptions of Australian earthworms, part I. Proc. R. Soc. Vict. 13 (n.s.) (1), 29-67.
Stephenson, J. (1930).-"The Oligochaeta." (Oxford.)
Stephenson. J. (1933).-Oligochaeta from Australia. North Carolina, and other parts of the world. Proc. zool. Soc. Lond. 1932, 899-941.

Fig. 11. Prostates of: A, Heteroporodrilus shephar di armatus, paratype 3, Lk4. B-E, Gemascolex bursatus, holotype, Jj3; B, dorsal; C, ventral; $D \& E$, prostates in situ, showing bursae, muscular ducts, and glands adherent to the intestine. F, Gemascolex lateralis, specimen 3, L11. G, Gemascolex stirlingi, specimen 1, Jg1. H, Gemascolex walkeri, holotype, Ji1. Scale 1 mm .

Fig. 12. Penial setae of Microscolex dubius, by scanning electron microscope. A, entire seta with muscle adherent basally; B, tip of same seta; C, D, E, sculpturing of same; F, seta of second specimen, L14.

Fig. 13. Penial setae of Heteroporodrilus shephardi armatus, by scanning electron microscope. A-D, holotype, L11; A, tip of seta; $B \& C$, sculpturing; D, sculpturing of second seta; $E \& F$, paratype 1, Lk4; E, tip; F, sculpturing.

Biodiversity Heritage Library

Jamieson, B G M. 1974. "Earthworms (Oligochaeta: Megascolecidae) from South Australia." Transactions of the Royal Society of South Australia, Incorporated 98, 79-112.

View This Item Online: https://www.biodiversitylibrary.org/item/127779
Permalink: https://www.biodiversitylibrary.org/partpdf/79054

Holding Institution

South Australian Museum

Sponsored by

Atlas of Living Australia

Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder. License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: * 7oulogy Depariment. University of Queensland, St. Lucia, Oid 4067.

[^1]: Materiol examined: Li2. $140^{\circ} 32 \mathrm{E}, 37^{\circ} 41^{\prime} \mathbf{S}$, 17 kmi SE of Millicent or road to Mt . Gambier, in sandy soil with grass, bracken and Drosera, fringing a Pinus rodiata plantation, T. W. 15 viii, 1972-H (AM).

 Rempokss G. similis belones to a G. dorsmizt complex including also G. octothecatus. It

