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ABSTRACT — This paper outlines an extension of the Krausz method for nonlinear system identifica-
tion in which the Poisson random impulse trains are used as the test inputs and the system is described by
the Volterra functional expansion. The extension concerns improvement of accuracy in the nonlinear
system identification that the test inputs are not perfectly random, in other words, their spectra are
non-white. A formula for the improvement of the system kernels in the functional expansion are given
under such input condition. This approach is illustrated and evaluated with analyses of the responses in
the crayfish brain activated by the pseudo-random impulse train stimuli. When the input spectral
property was apparently deviated from white, the accuracy of the system identification was efficiently
improved through the present procedure. Even if the input impulse trains are not perfectly random,
they can be used as the test inputs in order to identify nonlinear systems through the simple extension of
the Krusz method.

INTRODUCTION

White noise analysis has recently been a power-
ful tool for investigation of information processing
in living neuron networks. In the Lee-Schetzen
method for identification of non-linear systems,
the Wiener kernels for the functional expansion
can be evaluated by the multiple cross correlations
between "the white and Gaussian noise input" and
the  resultant  system  output  [1].  In  another
approach  of  nonlinear  system  identification,
Krausz has derived a similar method in which the
Volterra kernels are obtained from the multiple
^r^s-correlations between "the Poisson random
impulse train input" and the resultant system out-
put, because the ideal Poisson process is the white
noise  [2].  The  Poisson  random  impulse  train
inputs have been practically used in the linear and
nonlinear analyses of the nerve signal transmis-
sions in the crayfish brain [3-5]. If we are released
from the strict condition that the test inputs must
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be the white noise in the Krausz method, spon-
taneous spike trains which are observed in some
central nervous system and not so perfectly ran-
dom  could  be  employed  as  the  test  inputs  for
nonlinear analyses of neuron networks in it.

An  extension  of  the  Wiener  filter  for  linear
system identification to nonlinear system analysis
had  been  investigated  first  by  Tick  [6].  This
approach  brings  about  the  same result  as  the
extension of the Lee-Schetzen method using the
Gaussian  white  noise  inputs  to  the  use  of  the
Gaussian non-white inputs in identification of non-
linear systems. Several authors have described
almost same approaches as the Tick's one [7-10].
In this study, an extension of the Krausz method to
the use of non-white inputs was tried with the
pseudo-random impulse train inputs in the analysis
of  the  nerve  spike  train  transmissions  in  the
crayfish brain.

MATERIAL  AND  METHODS

The experimental date used in the present com-
putations were maink gathered m the brain (cere-
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bral ganglion) and partly in the abdominal gang-
lion  of  the  crayfish  (Procambarus  clarkii).  The
stimuli  to  the  brain  were  applied  to  the  nerve
bundle in the optic peduncle. At the same time,
the nerve spike trains of the brain outputs were
recorded extracellularly from the large descending
axons in the circumesophageal connective and
intracellular^  in  the  brain  [4,  5,  11].  The  input-
output data of the abdominal ganglion cells were
obtained by stimulation of axon bundles in the
interganglionic connective and extracellular re-
cording from the axons in the ganglionic roots.
The nerve cells in which the experimental data
were obtained were named by means of alpha-
numeric specification (Table 1). The alphabet in
each cell name indicates whether the cell is in the
brain (B-) or in the abdominal ganglion (A-). The
stimuli were generated with a random pulse gener-
ator [3], then the pulse trains which had various
degree of "non-white" spectral properties were
picked  up  for  the  present  purpose  (Fig.  1  and
Table 1).

Theory
In the Krausz method that the Poisson random

impulse train input is used as the test input x(t), the
system output y(t) is given by

y(t)=G  +  Gi+Gr

using the functionals

G = h

(1)

(2)h  l  {z)x{t-z)dz

h 2 (Tu z 2 )x(t-z l )

•X[t— Z 2 )dz X dz 2 ,

where h Q is the mean value of y(t), and hi and h 2
are the first  and second order system kernels,
respectively. The n-th order system kernel can be
obtained by the multiple cross-correlation

h n (z u ..., z n ) -^rE\[y(t)-J]G  k  ] (3)

■x(t-zi)...x(t-z  n  )\  ,  n#r  2  =¥...#r„,

in the brackest [2, 5].
The extension of the Wiener filter theory to the

nonlinear system identification, or the extension of
the Lee-Schetzen method to the use of the non-
white Gaussian input, has been given in the fre-
quency  domain  by  several  authors  [6-10].
Although the test input must be Gaussian and
white in the Lee-Schetzen method, only Gaussian-
ity of it is necessary in the extended method. The
bases of  this  extension are that  the odd-order
moments of the Gaussian process always vanish [9]
and that the even-order moments of it are decom-
posed into the product of its second order moment
[12].

The higher order moments of the Poisson pro-
cess can be also decomposed into the product of
the second order moment of it [2]. Therefore, it is
considered that, when the spectrum of the input is
non- white and also not so far from white, the same
procedure as the Gaussian input case can be used
in  order  to  improve  the  accuracy  in  nonlinear
system identification by the Krausz method, as
approximation. In this study, the improvement of
the system kernels  was performed in the time
domain by the reasons mentioned in the discus-
sion. The time domain version of the extension is
given as follows

°n)

ri).

h n (z u ..., Z n )

T n )dzi...dz n ,

(4)

where A is the mean rate of the input impulses and
E  |  |  indicates  the  expectation  of  the  content

where 4> xy is the rc-th order cross-correlation func-
tion between the input and the output, h n is the
improved n-th order system kernel  and &,  the
auto-correlation function of the input.

Computation
Signal intensity was set to be 1 in a bin (10 msec

width) where the nerve impulse (or the stimulus
pulse) was present and, otherwise, to be 0. First,
the unimproved Volterra kernels up to the third
order were calculated with the equation-(3) and
the improved kernels of the same orders were
derived with the equation-(4). The computation
with the original Krausz method was described
detailedly in the previous paper [5]. The equation-
(4) can be transformed by discretization into a
system of linear algebraic equations, whose coef-
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ficients construct the //-fold block Toeplitz matrix.
Several methods were tried in order to solve the
systems of the linear equations corresponding to
the present input-output data. These systems of
the linear equations can be solved by use of the
regular  structure  of  the  nested  block  Toeplitz
matrix and also any of the usual iterative methods
[13, 14].

Next, the unimproved model output z(f) and the
improved one z{t) were computed respectively
with the euqations-(l) and -(2) from each input-
output pair used in the above kernel computation.
Then the both model outputs were compared with
the output oi the same pair. i.e. the brain output
impulse train (Fig. 3). Last of all. the MSE (mean
square error) between the unimproved model out-
put z(t) and the brain output y(t)

e=E\(y(t)-z(t)Y\ (6)

and the MSE between the improved model output
and the same brain output as used above

e=E\{y(t)-z(t))' (7)

were  calculated.  E  j  j  denotes  time  average.
Then improvement of the model output was evalu-
ated by percentage of (e-e) in £ for each input-
output pair. The power spectra of the test inputs
were  calculated  from  the  normalized  auto-
correlation functions of them through the Fourier
transform. And the deviation of each input spec-
trum was evaluated also by means of the MSE
between it and the spectrum of the white noise of
unit power (Fig. 1).

Computations in this work had been begun with
a mini-computor HITAC 10-11 and were carried
out on several personal computors (Hitachi B-16/
B-32 series and others).

RESULTS

The input power spectra of the input-output
data used in this study are not flat, in other words,
non-white at a glance; but their deviations arc not
so  large  as  over  ±3  db  (Fig.  1).  Accordingly,  it
seems that these input-output data are suitable to
improve the system kernels with the present exten-
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Fig. 1. Power spectra of the random pulse trams used as the test inputs tor identification <>( the impulse signal
transfer systems in the crayfish central nervous systems The broken line in each graph of the spectrum indicates
the unit power level of the white noise
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sion of the Krausz method, i.e. the equation-(4).
The MSEs of the deviations of the input spectra,
the MSEs of the abrrations of the model outputs
which are calculated with the system kernels up to
the second orderd and up to the third order and
the perentages of the model output improvement
are given in Table 1. The MSE of the third order
model was usually smaller than the MSE of the
second order one for each input-output pair in
both unimproved and improved cases. And the
improvement percentage of the third order model
was mostly larger than the second order one and
had a tendency to increase depending upon aug-
mentation  of  the  deviation  of  the  input  power
spectrum (Fig. 2).

The  upper  half  of  Fig.  3  illustrates  the  third
order  model  outputs  before  (a)  and  after  (b)
kernel improvement for the data of the B04-cell, in
which  relatively  large  improvement,  9.76%,  is
obtained. Some large aberrations could be recog-
nized at several places in the unimproved model
output (Fig. 3a) and they decreased noticeabley in
the improved one (Fig. 3b). The lower half of Fig.
3 shows the effect of improvement of the kernels
up to the third order for the data of the B03-cell.
In this case, the MSE of the third order model was
extremely small, the percentage of improvement
was also small, 2.56%, and the large aberrations
could not be discriminated over the whole range of
the model outputs before (Fig. 3c) and after (Fig.
3d) improvement of the system kernels.
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Fig. 2. Relationship between the deviations (MSEs) of
the test input spectra from the unit power level of
the white noise and the improvements (%) of the
model outputs of the second order (open marks) and
the third order (filled marks) for the responses of the
brain cells (circles) and the abdominal ganglion cells
(squares) (see Table 1).

Table 1. The MSEs of the deviations of the input power spectra, the MSEs of the aberrations in the
unimproved and improved model outputs of the second order and the third order and the
improvement percentages of the model outputs. Asterisks indicate the exceptional cases (see Fig.
4). Units of the MSEs are not comparable between the inputs and the model outputs.

Cell
names
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Fig. 3. Comparisons between the unimproved model output (a) and the improved one (b) for the response of the
B04-cell and between the unimproved (c) and improved model outputs for the response of the B()3-cell. In each
record, lower solid trace represents the stimulus pulse train, the upper dotted trace represents the brain output
impulse train and the upper solid trace shows the model outputs calculated with the unimproved (a and c) and
improved (b and d) kernels up to the third order. Horizontal scale: 200 msec. Vertical scale: Unit impulse height
(inapplicable to stimuli).

The two exceptional cases were observed in the
present study (asterisks in Table 1). For the B02-
cell. the MSE of the unimproved third order model
output was larger than the MSE of the unimproved
second order one, but the MSE of the third order
model output drastically decreased after improve-
ment of the third order system kernel (Table 1,
and Fig. 4a. 4b). It may be noticed that the data of
the B02-cell has been obtained in the brain im-
mediately after application and removal of picroto-
xin  (10  \M).

The exception of another type occurred in an
abdominal ganglion cell (A50): the improvement
of the third order kernel caused remarkable de-
terioration of the model output (Table 1 , and Fig.
4c. 4d). In this case, the MSE of the second order
model  output was very small  beforehand with
construction of the third order one (Table 1). It

was difficult to predict the behaviours of the third
order  model  outputs  from  the  features  of  the
second order models in these exceptional cases.

Generally  speaking,  it  can  be  concluded  the
larger the deviation of the input power spectrum,
the more the model output of any order is im-
proved (Fig. 2).

DISCUSSION

Although the equation for the extension of the
Wiener filter to the nonlinear case can be derived
in the time domain, most authors have given the
equation  in  the  frequency  domain  [7-9).  They
should naturally consider that it can be solved
practically by use of the last Fourier transform
However, the latest author has pointed out that
the computations of the high-order spectral density
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Fig. 4. The exceptional cases that the drastic changes occurred in the model outputs after improvement of the third
order system kernels, shown by asterisks in Table 1. The model outputs before (a) and after (b) improvement of
the system kernels up to the third order for the response of the B02-cell. The model outputs before (c) and after
(d) improvement of the system kernels up to the third order for the response of the A50-cell. Horizontal scale:
200 msec. Vertical scale: Unit impulse height.

functions are usually  very expensive and time-
consuming  [10].  In  addition,  moving  average
techniques as the data window and the spectral
window are indispensable for stable computation
of the frequency domain version of the equation-
(4) by use of the discrete data time series and the
discrete Fourier transform [8]. Consequently, very
high sampling rate must be employed in order to
reproduce sharply each impulse in the model out-
put after application of such moving average tech-
niques. Therefore, the processing of very large
number  of  the  data  points  is  not  avoidable  in
identification of the impulse output nonlinear sys-
tems  in  the  frequency  domain.  However  the
Krausz method can be used without any moving
average techniques in order to identify the impulse
input-output nonlinear systems [5]. Thus the ex-
tension of the Krausz method was tried in the time
domain.

In spite of the non-Gaussian property of the
pseudo-random impulse train inputs used in this
study, the present results indicate that the im-
provement of the system kernels with the equa-
tion-^)  can  reduce  efficiently  the  identification
errors resulted from the non-white spectral proper-
ty  of  the  present  test  inputs.  And  the  kernel
estimation admits of further improvement when
effects of the odd-order moments of the test input
can be taken into account in computation of the
system kernels, because the odd-order moments of
the pseudo-random impulse train do not vanish
usually. But, the effects of the corrections of the
second order system kernels by the third order
moments  of  the  inputs  were  very  small  in  the
present computation; for instance, about 0.2% for
the input-output pair of the B02-cell. In any case,
it is considered that spontaneously evoking nerve
spike trains in some living neuron network can be
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used as the test inputs for nonlinear analyses of
nerve signal transfers in it through the present
extension of the Krausz method, even it" they are
not so highly random.
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