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EXPLANATION  OF  Phare  I.

Fig.  1.  <A  piece  of  the  placental  cord  of  Zygena  blochti,  natural  size.
Fig.  2,  Transverse  section  through  the  same,  showing  artery  and  vein,  lym-

phatic  (?)  spaces,  and  three  appendicula  in  oblique  section  with  parts  of  two  more
in  vertical  section.  x16.

Fig.  3.  A  portion  of  one  of  the  appendicula  of  the  same,  showing  the  ramifying
vessel.  x  21.

Fig.  4.  Transverse  section  through  part  of  one  of  the  appendicula  of  the  same,
near  its  base.  x  110.

Fig.  5.  Transverse  section  through  uterine  wall  of  Myliobatis  niewhofii,  showing
fibrous  and  muscular  coats,  and  mucous  membrane,  with  the  bases  of  three  papilla.
x 21.

Fig.  6.  Obliquely  transverse  section  through  part  of  one  of  the  uterine  papillee
of the same, showing some of the simple follicles of the mucous membrane in oblique
section,  and  one  of  the  racemose  follicles.  x  110.

III.—On  Clebsch’s  Transformation  of  the  Hydrohkinetic  Equations.
By  Asvrosh  Muxnopapuyay,  M.  A.,  FL  R.  A.S.,  FL  R.S.  EH.

[Received  February  27th  ;—Read  March  6th,  1889.]

A  first  integral  of  the  hydrokinetic  equations  of  Huler’  may  be
obtained  by  known  methods  in  three  cases:  (1)  Irrotational  motion  ;
(2)  Steady  rotational  motion;  (3)  General  rotational  motion.  It  is  the
object  of  this  note  to  show  how  the  method  of  applying  Clebsch’s
transformation  to  the  third  case  can  be  materially  simplified,  and  inci-
dentally  the  relation  between  the  three  solutions  is  pointed  out.*

Starting,  then,  with  the  hydrokinetic  equations,  we  remark  that
they  may  be  at  once  reduced  to  the  forms

du  dk
eee  hol  ss  ae  =  0  o00+e+  101  vee  (1)

UTE  One  ee  0  Be  ON
dt  dy
dw  dk
Fe  7  2  2s  +  As  =0  oe  cee  coeens  (3)

d  1
where  na  f  a  Vie  5  0

ge  =  w+?  4+w

*  For  the  ordinary  method,  see  Basset’s  Hydrodynamics,  vol,  i,  p.  28.

—
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In  the  first  case,  for  irrotational  motion,  the  components  of  mole-
cular  rotation  é,  y,  ¢  vanish,  implying  the  equations

dd  dp  dp
oe  ie  Cai?  eras

and  the  equations  of  motion  reduce  to
dU  dU  dU
Fe  0,  ay  =  0,  A  0

where

v=T4+R.

Hence,  the  required  first  integral  is

dp  ee

where  F  is  ordinarily  a  function  of  the  time,  but  for  steady  motion  an
absolute  constant  throughout  the  liquid.

Secondly,  if  the  motion  is  rotational  but  steady,  we  have
du  do  dw
Te  ee

and  the  equations  of  motion  lead  to

dk  dR  ak
aa  a  De

ak  dR  dk
de)  dy  deo

These  linear  differential  equations  lead,  by  Laplaces’s  method,  to  the
subsidiary  systems

u  v  w
dx  dy  _  dz
et  prpeae  4

which  denote  respectively  stream  lines  and  vortex  lines.  Hence,  it  is
possible  to  construct  a  series  of  surfaces

Rt  =  constant
each  of  which  shall  be  covered  over  with  a  net  work  of  stream  lines
and  vortex  lines.  Hence  for  steady  rotational  motion  we  have

{2  —+V4+-  so  =  constant,

the  constant  being  an  absolute  constant  so  long  as  we  pass  from  point
to  point  on  a  stream  line  or  vortex  line,  but  which  varies  as  we  pass
from  one  stream  line  to  another  or  from  one  vortex  line  to  another.
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Thirdly,  if  the  motion  of  the  liquid  is  perfectly  general,  neither
steady  nor  irrotational,  we  may  put,  after  Clebsch,

udu  +  vdy  +  wdz  =  dp  +  dA  dx.

Observe  for  a  moment  that  as  this  simply  signifies  that  the  differential
expression  on  the  lefthand  side,  when  not  a  perfect  differential  may  be
resolved  into  two,  one  of  which  is  so,  and  the  other  may  be  made  so  by
means  of  an  integrating  factor,  the  legitimacy  of  the  transformation  is
selfevident.  We  have  then

wie  a  geen  yea

dp  dx
Se  Nee

dz

ey  ee  eee  oNé  dy  dz  dz  dy

dX  dx  dd  dx
21  ae  de  de  de

apa  ax  _  a  dx
~  de  dy  dy  da

dx  dx  dx  _
é  By  +  7  dy  G  Pe

both  of  which  give  the  subsidiary  system

dx  dy  dz
Som  aac

the  differential  equation  of  vortex  lines.  Hence  the  vortex  lines  are
obtained  as  the  intersection  of  the  surfaces  4  =  constant,  x  =  constant.

Again,  the  value  of  u  aos

De  OE,dt  ie  dt  dt  dtdx  dz  dt

Substituting  in  equation  (1),  we  have  at  once

=  dAdx  éydXr
dtde  Stdx  —

_  (&  dd  bits=  fis  dale  IR  +e
where
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and  6  denotes  particle  differentiation.  Equations  (2)  and  (3)  lead  to
two  similar  equations,  and  we  have

dH  CPST  CH  &  &
S  aa  +7  a  at  cz  =  0

leading  to  the  subsidiary  system

§ Are ih Wena
which  denote  vortex  lines.  Hence,  we  see  that  itis  possible  to  construct
a  family  of  surfaces

H  =  constant,

covered  over  by  vortex  lines,  and  the  mode  of  integration  shows  imme-
diately  that  the  constant  is  a  function  of  the  time  alone.  Therefore,  for
steady  rotational  motion  we  have

dp  PA  EX  arbi  ig
f  met  ont   ae  to!  mere

along  a  vortex  line.

IV.—Note  on  Stokes’s  Theorem  and  Hydrokinetic  Circulation.
By  Asutosh  Muxnopapuyay,  M.A.,  F.  R.  A.S.,  F.  B.S.  2B.

[Received  March  24th  ;—Read  April  3rd,  1889.]

The  object  of  this  note  is  to  give  a  new  proof  of  Stokes’s  formula
for  hydrokinetic  circulation

f  carats  eayas  ff  (lét+myntnue)dS,

and  to  point  out  how  it  is  an  immediate  consequence  of  the  theory  of
the  change  of  the  variables  in  a  multiple  integral.

Assume,  after  Clebsch,

ude  +  vdy  +  wdz  =  dp  +  dA  dx,

so  that  the  integration  being  performed  round  a  closed  curve,  we  have

f  (udu  +  vdy  +  wdz)  =  f-  »  dx.

But,  the  value  of

ii  d  dx
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taken  round  the  closed  curve  is  clearly  equal  to  the  sum  of  the  values  of

ffs

taken  round  the  projections  of  the  closed  curve  on  the  coordinate  planes,
Now,  for  the  projected  curve  on  the  coordinate  plane  of  yz,  we  have  at
once  from  the  ordinary  formule  for  the  transformation  of  multiple
integrals,

ae  dX  dx

(=  a  dv  ak
The  projected  curves  on  ss  other  two  coordinate  planes  lead  to  two

similar  expressions.  Hence,  the  circulation  round  the  given  closed
curve  is  furnished  by

f  (udu  +  vdy  +  wdz)

dkdx  ddd
aX  ay  de
dydz   dzdy

addy  _  ad  dx
+  AGE  Gz  cps  Sas  dx

dy  aX  dX  dx
+  ff  GE-Fiew

But,  as  an  immediate  consequence  of  Clebsch’s  transformation,  we  have

eS —

dp  dx=—  Nes
eee  Es  i

dp
a  dy  as  =

_  do  dx
eae  nw  ~

whence

es  ee
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Therefore,  putting
dydz=1dS,  dadz=mdS8,  dady  =  ndS8,

where  J,  m,  n  are  the  direction  cosines  of  the  normal,  we  have

(uda  +  vdz  +  wdz)

&  -*)  Ee  (=  af  dw(=  aa  m  a  a)  +n

=  2  fe  +  my  +  nb)  dS,

which  is  Stokes’s  Theorem.  It  is  worth  noting  that  as  no  physical  con-
ception  enters  into  the  above  proof,  it  holds  good  whether  we  regard  the
theorem  as  a  purely  analytical  one  or  as  merely  furnishing  a  formula  for
hydrokinetic  circulation.

dv  du

V.—On  a  Curve  of  Aberrancy.
By  AsvutosH  Muxwopapuyay,  M.  A.,  F.R.  A.  S.,  F.  B.S.  BE.

[Received  May  23rd  ;—Read  June  5th,  1889.]

If  a  curve  be  referred  to  rectangular  axes  drawn  through  any
origin,  the  coordinates  (a,  6)  of  the  centre  of  aberrancy,  which  is  the
centre  of  the  osculating  conic  at  any  given  point  (#,  y)  of  the  curve,
are  given  in  the  most  general  form  by  the  system

a  =e  —  ie
F  3gs  —  “Dre

Se  iy)
Peds  3qs  —  dr?

where  p,  g,  7,  s  are  the  successive  differential  coefficients  of  y  with
respect  to  z.*  The  locus  of  (a,  8)  is  called  the  aberrancy  curve  of  the
given  curve,  and  in  this  note,  I  shall  investigate  the  aberrancy  curve
of  a  plane  cubic  of  Newton’s  fourth  class}

=  ax?  +  3ba*  +  8ce  +  d
in  which  the  diametral  conic  degenerates  into  the  line  at  infinity.

We  have
p  =  3  (ax*  +  2bx  +  c)
g  =  6  (ax  +  b)
r  =  6a
s=0

*  J.  A.  S.  B.  1888,  vol.  lvii,  part  ii,  p.  324.
+  Salmon’s  Higher  Plane  Curves,  (Hd.  1879),  p.  177.
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whence

pr  —  3g?  =  18  (ac  —  b?)  —  90  (aw  +  b)*
82  3b

a  re  US  fe5  5a
vas  ax  +b  Q  2

B=y+3  |  18  (ae  v2)  —  90  (ax  +  b)  }

Therefore
_  38a  3b

Sue  oa

5
az  +b  ==  (aa  +  b)

and

ms  9  (aa  +  b)  Fs  125  A
1-8  Ba  |  (oo  8)  —  ae  (an  +  0)  |

But  from  the  equation  of  the  curve  we  have

a®’y  =  (ax  +  b)?  +  38a(ac  —  b*)  «  +  atd  —  Bb,

Therefore,  substituting  for  «  and  y  in  terms  of  a  and  £,  we  have
64  a®?B  =  —  125  a®a®  —  375  a®ba®  +  (192  ac  —  5670?)  aa

+  (64a%d  —  189°),
or,  writing  x,  y  for  a,  B,  we  see  that  the  aberrancy  curve  of  the  plane
cubic

y  =  ax®  +  3ba®  +  8ca  +  d
is  another  plane  cubic  of  the  same  class

y  =  Aa’  +  3Bz?  +  3802+  D
where

A=  -—ka
B=-—kb

—  J
C=  —he+  (1+  hk)

a’d — 68
D=  ahd  Ct  i)  a

125
arr

If,  therefore,
HH  =  ac  —  0,  G=a®d  —  3abe  4  2b

be  the  invariants  of  the  given  cubic,  and  H’,  G’  the  corresponding  quan-
tities  for  the  aberrancy  cubic,  viz.,

H’  =  AC  —  B?,  G!  =  A®D  —  3ABO  +  2B3,
we  have  by  direct  calculation

H’  =  —k
G!  =  eG.
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It  follows,  therefore,  that  the  quantity

H?  (ac  —  b?)2
Gawd  —Babe  +208

is  an  invariant  for  the  given  cubic  and  its  aberrancy  curve.
If  we  seek  the  common  points  of  intersection  of  the  two  cubics,

we  find  on  subtracting  the  equations
(az  +  6)?  =0

which  shews  that  the  two  cubics  have  only  one  common  point  of  in-
tersection  which  is  the  point  of  inflexion  for  both;  the  coordinates  of
the  point  are

V1I.—Natural  History  Notes  from  H.  M.  Indian  Marine  Survey  Steamer
‘Investigator,’  Commander  Atrrep  Carpenter,  R.  N.,  D.  S.  O.,
commanding.—No.  15.  Descriptions  of  seven  additional  new  Indian
Amphipods.—By  G.  M.  Giuus,  M.  B.,  F.R.C.S8.,  late  Surgeon-Natu-
ralist  to  the  Survey.

[Received and Read November 6th, 1889. ]

(With  Plate  IT.)

Before  proceding  to  the  description  of  the  species  now  described,
I  have  to  make  a  correction  in  my  last  paper  read  on  February  Ist,  1888.

In  that  communication,  I  described,  under  the  name  of  Concholestes
dentallii,  gen.  et  sp.  noy.,  a  curious  corophiid  which  inhabits  deserted
dentalium  shells;  remarking  that  I  believed  that  such  a  habit  had  not
beeu  previously  noted  in  an  amphipod.  I  find,  however,  I  was  in  error
in  this  matter,  as,  while  searching  for  references  to  species  which  might
be  identical  with  those  described  in  the  present  paper,  I  came  across
a  description  of  a  Norwegian  species  which  is  certainly  congeneric  and,
like  the  Indian  species,  inhabits  deserted  dentalium  shells.  Sars  (Forh.
Vidensk.-Selsk.  Christiania,  1882,  No.  18,  pp.  1138,  Part  VI,  fig.  7)
describes  this  species  as  Siphonacetes  pallidus.

I  do  not  see,  however,  how  either  Sars’  or  my  species  can  be  in-
cluded  in  Siphonecetes  without  unduly  straining  Kroyer’s  definition
of  the  genus  in  Nat.  Tidskr.  I,  p.  491.  In  the  two  species  under  consi-
deration,  the  Ist  and  2nd  gnathopoda,  instead  of  being  subequal,  present
a  very  marked  difference  of  size;  and  again,  the  eighth  thoracic  appen-
dages  are  very  long,  instead  of  the  6th,  7th,  and  8th  being  “  very  short.”
My  species  too  wants  the  double  hook  to  the  single  ramus  of  the  last
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