FUNCTIONAL CONSTRAINTS AND rbcL EVIDENCE FOR LAND PLANT PHYLOGENY¹

Victor A. Albert,^{2,3} Anders Backlund,² Kåre Bremer,² Mark W. Chase,⁴ James R. Manhart,⁵ Brent D. Mishler,⁶ and Kevin C. Nixon⁷

ABSTRACT

Although the proportion of "functional" DNA in eukaryotic genomes is both debatable and subject to definition, most sequences gathered for phylogenetic purposes are indisputably functional. For example, patterns of variation are likely to be strongly constrained in ribosomal RNAs because of their structural and catalytic roles in protein translation, and in protein-coding genes, because of protein function itself. Although seemingly obvious, these concerns are usually ignored by workers producing gene trees. We have examined the extent of functional constraints in land-plant rbcL sequences. Not only do rbcL sequences appear to change with essentially clocklike regularity, but nucleotide-based cladograms imply that approximately 97.5% of codon changes on internal branches are functionally neutral (i.e., synonymous or functionally labile). From this perspective, rbcL evolution appears to be strongly constrained by function. Transforming nucleotide data into ad hoc string recognitions alters the size of the unit character sufficiently to highlight "blocks" of conservative information that may or may not be functionally constrained. Simultaneous cladistic analysis of all available evidence will highlight the proportion of congruent information, despite diverse functional constraints among the characters analyzed. We demonstrate the strength of this approach using different forms of the same rbcL evidence (i.e., nucleotides, strings, or amino acids) in combination with the seed-plant data of Nixon et al.

Diversification of the major clades of extant land plants probably dates from the Silurian to Cretaceous. During the Silurian-Devonian, liverworts, hornworts, mosses, and tracheophytes formed distinct lineages. Differentiation of the tracheophyte clades, notably angiosperms and other seed plants, began by the Devonian. The estimation of landplant phylogeny, a research goal spanning over 400 million years of cladogenesis and extinction, is no simple task. For example, many groups lack strong morphological similarities that might suggest patterns of relationship.

Recent years have seen an explosion of interest in molecular information, with its promise of easily interpreted similarities for bridging otherwise large phenotypic gaps. In particular, the plastid *rbcL* gene (which encodes the large subunit of RuBisCO: ribulose-1,5-bisphosphate carboxylase/oxygenase, a primary enzyme in carbon fixation) has been sequenced extensively, with primary emphasis on the angiosperms (Clegg, 1993; Chase et al., 1993). Arguing from expected synonymous substitutions per site under a particular rate assumption, Clegg (1993) suggested that *rbcL* sequences should be phylogenetically informative for the time interval 400–100 million years before present. We argue here that this and similar assertions are incomplete. From direct estimation of *total* substitutions (as optimized on cladograms; see Albert et al., 1992a, 1993; Albert & Mishler, 1992 Albert et al., 1993)

Department of Systematic Botany, Uppsala University, Villavägen 6, S-752 36 Uppsala, Sweden.
 Present and corresponding address: Department of Physiological Botany, Uppsala University, Villavägen 6, S-752
 Uppsala Sweden

36 Uppsala, Sweden.

⁴ Laboratory of Molecular Systematics, Royal Botanical Gardens, Kew, Richmond, Surrey TW9 3AB, United Kingdom.

⁵ Department of Biology, Texas A&M University, College Station, Texas 77843, U.S.A.
⁶ University and Jepson Herbaria and Department of Integrative Biology, University of California, Berkeley, California 94720, U.S.A.

⁷ L. H. Bailey Hortorium, Cornell University, Ithaca, New York 14853, U.S.A.

ANN. MISSOURI BOT. GARD. 81: 534-567. 1994.

¹We thank Steve Farris and Peter Engström for ideas, advice, and discussion, Diana Lipscomb, Brunella Bowditch, and Mick Richardson for comments on an earlier draft of the manuscript, Bill Crepet, Else Marie Friis, and Dennis Stevenson for permission to use unpublished versions of their data matrix produced in collaboration with KCN, and Bill Anderson for last-minute discussion of Malpighiaceae biogeography. All interpretations are, of course, our own. The program for constructing random strings was written by Karl-König Königsson and Rolf Staflin. Support from the Swedish Natural Science Research Council (to VAA, AB, and KB) and the U.S. National Science Foundation (BSR-8906496 to MWC, BSR-8906126 to JRM, BSR-9107484 to BDM) is gratefully acknowledged. Lastly, VAA thanks the symposium organizers, travel arrangement staff, and editorial office of the Missouri Botanical Garden for their courteous and patient assistance.

we will demonstrate that divergence-time asymmetries among taxa restrict *rbc*L-based hypotheses of land-plant phylogeny far more than do rate asymmetries.

We have examined the internal stability of landplant rbcL evidence through conversion of nucleotide information into different data forms, including presence/absence of ad hoc nucleotide strings. Cladograms produced from nucleotide, string, and translated amino acid data are only partially congruent. Character optimization on both nucleotide and string trees reveals extensive functional conservation through the predominance of silent changes and labile (function-conserving) amino acid replacements. Hence, rbcL nucleotides are no less functionally constrained than morphological characters (contra Olmstead, 1989; Sytsma et al., 1991; Clegg, 1993).

Although the separation of protein-functional from cladogenetic history may not be entirely possible, the extent to which functional history reflects phylogeny might be assessed through congruence studies with characters expected to carry diverse patterns of functional constraints. As such, we have performed total-evidence analyses at the seed-plant level using, as a "constant," a new matrix of primarily morphological data (Nixon et al., 1994, this issue). It emerges that combination of rbcL nucleotide, amino acid, or string data with this matrix produces highly compatible cladistic hypotheses. These studies point to (i) the commonality of information in different data forms representing the same evidence, and (ii) the power of simultaneous evaluation of all available evidence and weakness of further production of rbcL gene trees (cf. Kluge, 1989; Barrett et al., 1991; Donoghue & Sanderson, 1992; Jones et al., 1993; Mishler, 1994).

THE RATE "PROBLEM"

As has been pointed out in several recent papers, sequence change in the rbcL gene is not strictly clocklike (Albert et al., 1992a; Bousquet et al., 1992; Gaut et al., 1992; Clegg, 1993). Here, we provide a number of new comparisons (Table 1) based on patristic distances between woody taxon pairs from Search II of Chase et al. (1993). It is clear that our own estimates and those of other workers all fall within a very narrow range of absolutely low values. The mean rate per taxon pair investigated here is approximately 2×10^{-10} total substitutions per site per million years; Wendel & Albert (1992) estimated $5-7 \times 10^{-10}$ for three herbaceous-pair comparisons. Lineage-specific rate differences were found by Bousquet et

al. (1992) and in the relative-rate tests of Gaut et al. (1992), but absolute rate estimates do not differ substantially from our own findings. Thus, whereas rbcL data cannot be considered perfectly ultrametric (i.e., satisfying a clock assumption), the small range of absolute variation suggests that some predictions of the clock hypothesis still apply. For example, the relationship between time and the accumulation of nucleotide substitutions may be nearly linear. We term this condition, apparently characterizing rbcL sequence data, "quasi-ultrametric."

Quasi-ultrametricity has several important implications. One is that the extent of sequence divergence in a given taxon sampling should roughly reflect the timing of underlying cladogenetic events. If all such events are ancient, extensive sequence differences among all taxa are to be expected (Fig. 1; cf. Donoghue & Sanderson, 1992, fig. 15.3). If some cladogenetic events are ancient whereas others are much more recent, expected sequence divergence in a data set would be prominently skewed (Fig. 2). As these properties become extreme, parsimony analysis will be hampered by the increased probability of parallel changes among either anciently diverged or divergence-time-asymmetric sequences (Figs. 1, 2; cf. Donoghue & Sanderson, 1992: 347-349). Given that A, T, G, and C are the only character-state alternatives, either scenario is likely to produce patterns of similarity that may be nonhomologous and therefore cladograms that are ahistorical. This is precisely the "long branches attract" issue raised by Felsenstein (1978) and others.

Although asymmetrical rates of sequence change are often invoked to explain branch attraction behavior (see Clegg and Zurawski, 1992: 10, with reference to rbcL), the problem is better defined in terms of both rate and divergence time as their product, per-character change: the λ of Albert et al. (1992a, 1993; Albert & Mishler, 1992; cf. Hendy & Penny, 1989). With quasi-ultrametric data, rate asymmetry is unimportant in this regard; time through which a branch exists becomes the central factor. As such, our expectation of the performance of parsimony analysis on rbcL data must include our ability to estimate both the absolute and relative timing of cladogenetic events inherent to particular data matrices. Of course, this may not always be possible.

An additional implication of quasi-ultrametricity is the near satisfaction of selective neutrality. A molecular clock is predicted by the neutral theory of molecular evolution; equal rates of mutation and fixation are the expectation (see Kimura, 1983;

Table 1. "Phylogenetic" estimation of total substitution rate for 19 woody-taxon pairs. The rate of sequence divergence was calculated as per-site divergence (the patristic distance, D_p, divided by the number of nucleotides compared) divided by time since cladogenesis (Albert et al., 1992a). Average rates for individual taxa are half of the values shown. Data are from Search II of Chase et al. (1993); systematic error associated with that analysis can be expected to affect all calculations equally. Divergence time assumptions are based upon geologic dates associated with vicariant disjunctions (with the exception of all Arecaceae comparisons, which follow from the arguments of Wilson et al., 1990).

o' gar, so no lleka ditrologado	seineracco - las	Divergence time	Celos	Divergence rate (subst./site·
Taxon pair	Area	assumption	D_p	taxon pair)
Callitris rhomboidea R. Br. ex Rich. Widdringtonia cedarbergensis Marsh (Cupressaceae)	Australia Africa	100 My*	55	3.85 × 10 ⁻¹⁰
Metasequoia glyptostroboides Hu & W. C. Chang	Asia	40 My ^b	16	2.80×10^{-10}
Sequoiadendron giganteum (Lindl.) J. Buchholz (Taxodiaceae)	N. America			
Illicium parviflorum Michx. ex Vent Austrobaileya scandens C. T. White (Illiciaceae/Austrobaileyaceae)	N. America/Asia Australia	200 My ^c	54	1.89 × 10 ⁻¹⁰
Drimys winteri J. R. & G. Forst. Belliolum sp. (Winteraceae)	S. America New Caledonia	100 My	21	1.47 × 10 ⁻¹⁰
Drimys winteri J. R. & G. Forst. Tasmannia insipida DC. (Winteraceae)	S. America Tasmania	100 My	14	0.98 × 10 ⁻¹⁰
Canella winteriana (L.) Gaertn. Belliolum sp. (Canellaceae/Winteraceae)	N. America New Caledonia	200 My	78	2.73 × 10 ⁻¹⁰
Canella winteriana (L.) Gaertn. Tasmannia insipida DC. (Canellaceae/Winteraceae)	N. America Tasmania	200 My	67	2.35 × 10 ⁻¹⁰
Liriodendron tulipifera L. Liriodendron chinense (Hemsl.) Sarg. (Magnoliaceae)	N. America Asia	40 My	10	1.75 × 10 ⁻¹⁰
Calycanthus chinensis Cheng & S. T. Chang	Asia/N. America	200 My	28	0.98×10^{-10}
Idiospermum australiense (Diels) S. T. Blake	Australia			
(Calycanthaceae/Idiospermaceae)				10-10
Chimonanthus praecox (L.) Link Idiospermum australiense (Diels) S. T. Blake	Asia Australia	200 My	24	0.84 × 10 ⁻¹⁰
(Calycanthaceae/Idiospermaceae)				
Chamaedorea costaricana Oerst. Drymophloeus subdistichus	Americas S. Pacific	60 My ^a	15	1.75 × 10 ⁻¹⁰
(H. E. Moore) H. E. Moore (Arecaceae)				
Chamaedorea costaricana Oerst.	Americas	60 My	20	2.33 × 10 ⁻¹⁰
Nypa fruticans Wurb. (Arecaceae)	S. Pacific/India	oo my		
Serenoa repens (Bartram) Small Drymophloeus subdistichus (H. E. Moore) H. E. Moore (Arecaceae)	Americas S. Pacific	60 My	18	2.10 × 10 ⁻¹⁰

TABLE 1.	Continued
----------	-----------

Taxon pair	Area	Divergence time assumption	D_{p}	Divergence rate (subst./site· taxon pair)
Serenoa repens (Bartram) Small Nypa fruticans Wurb. (Arecaceae)	Americas S. Pacific/India	60 My	23	2.68 × 10 ⁻¹⁰
Betula nigra L. Casuarina litorea L. Betulaceae/Casuarinaceae)	N. Hemisphere Australia	200 My	35	1.23 × 10 ⁻¹⁰
Nothofagus dombeyi (Mirb.) Oerst. Nothofagus balansae (Baill.) Steenis Nothofagaceae)	S. America New Caledonia	100 My	30	2.10×10^{-10}
Galphimia gracilis Bartl. Acridocarpus natalitius A. Juss. Malpighiaceae)	SN. America ^r Africa/Madagascar/ New Caledonia	100 My	34	2.38×10^{-10}
Dicella nucifera Chodat Acridocarpus natalitius A. Juss. Malpighiaceae)	S. America Africa/Madagascar/ New Caledonia	100 My	33	2.31 × 10 ⁻¹⁰
Mascagnia stannea (Griseb.) Nied. Acridocarpus natalitius A. Juss. Malpighiaceae)	SN. America Africa/Madagascar/ New Caledonia	100 My	34	2.38 × 10 ⁻¹⁰
Range Mean 5.D.				3.01×10^{-10} 2.05×10^{-10} $\pm 0.75 \times 10^{-10}$

Standard time figure used to represent the breakup of Gondwana (rounded to the nearest 100 My (million years) from 130 My, as estimated using Terra Mobilis® 2.1 by C. R. Denham and C. R. Scotese; see Wendel & Albert, 1992: 137).

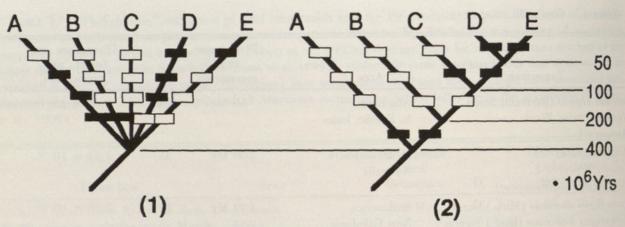
Standard time figure (ca. early Oligocene) used to represent disruption of the boreotropical interchange between

North America and Eurasia (see Lavin & Luckow, 1993).

Standard time figure used to represent separation of the Northern and Southern Hemispheres upon the breakup of Pangaea (rounded to the nearest 100 My from 160 My, as estimated using Terra Mobilis® 2.1 by C. R. Denham and C. R. Scotese; see Wendel & Albert, 1992: 137).

Divergence date used by Wilson et al. (1990), based on the fossil record.

North American Malpighiaceae are here interpreted as representing range expansion from South America.


Nei, 1987). Quasi-ultrametric data may imply selection coefficients very close to neutrality. Remembering that the underlying premise of selective neutrality is the neutral effect of point mutations, nearly clocklike sequence evolution should involve a large proportion of such changes, fixed as effectively neutral substitutions. Such substitutions would be expected to be mainly silent (i.e., synonymous with respect to amino acid8), and, with regard to amino acid replacements, functionally conservative (labile). Quasi-ultrametricity in rbcL nucleotide sequences is thus an expected manifestation of strong constraints on protein function.9

UNIT CHARACTERS AND FUNCTIONAL CONSTRAINTS

As recently reviewed by Clegg (1993), a number of systematic and evolutionary studies have relied solely on rbcL sequence variation. Such analyses make the implicit assumption that rbcL nucleotides are independent and potentially informative markers of cladogenetic events. As discussed above with respect to total rates of change, if all branching events under consideration are relatively recent, parsimony analysis may be expected to proceed with a reduced probability of spurious branch attraction because of the absolutely lower expected

^{*}See Clegg (1993) on synonymous rates for rbcL; note that only total substitution rates are relevant to cladistic methods because all informative variation is considered.

Assuming that purifying selection eliminates mutations deleterious to protein function and that f is the fraction of such mutations, the neutral theory may be reformulated as

Patterns of historical versus spurious similarity resulting from symmetrically ancient and asymmetrical time-samples. In both cases, time-sample refers to the nodes on these imaginary trees. In (1), all nodes are essentially time-coincident at 400 My, so the "true tree" appears polytomous. In (2), the cladogenetic events indicated occur asymmetrically with respect to time, ranging from 400 to 50 My since divergence. Possible patterns of nucleotide change are indicated by the filled and open rectangles; the former represent unadulterated markers of cladogenetic history, whereas the latter represent spurious character-state similarity resulting, e.g., from multiple nucleotide substitutions. In (1), these patterns of similarity are approximately equal in extent (because of nearly clocklike substitutional behavior) but are in partial conflict with each other; parsimony analysis may include resolutions containing some proportion of ahistorical evidence or even alternatives comprising totally spurious patterns. This might be the expectation if taxa A through E were, e.g., Isoetes, Selaginella, Psilotum, Equisetum, and Angiopteris. In (2), which approximates the situation in simultaneous studies of sporing and seed plants, the problems of (1) are only partially alleviated. Patterns of convergent similarity between the oldest taxa, A and B, will result in most parsimonious reconstructions that pair these taxa spuriously. As divergence time becomes shallower, the reduced likelihood of multiple changes at sites will insure that D and E are paired historically. Although C is linked with (D, E) by "true" similarity, this relationship may be broken by false similarities between B and C as well as between B, (C, D, E). In summary, comparing only anciently diverged lineages with rbcL may suggest patterns of relationship that represent a hopelessly even mixture of historically reliable and nonreliable similarity. Likewise, comparison of ancient and recently diverged clades may have the same problem near the base while being relatively more consistent near the tips. This condition may characterize the rbcL-based results shown in this paper.

sequence divergence and relatively lower associated likelihood of character-state parallelism. This "time-sampling" strategy has been employed in circumscribed studies ranging from particular angiosperm groups (e.g., Conti et al., 1993; Kron & Chase, 1993; Rodman et al., 1993) to seed plants as a whole (Chase et al., 1993). Here, a "time sample" refers to the nodes rather than the terminals on an imaginary tree; as such, a time sampling is the collection of absolute and relative timings of underlying cladogenetic events in a data matrix. Of course, the nodes of a cladogram are not discernible a priori to analysis, but their absolute and relative timing may be estimated by external criteria (e.g., the fossil record; cf. Norell & Novacek, 1992).

Initial attempts to analyze time samples beyond angiosperms and other seed plants (i.e., including rbcL sequences from sporing plants; Albert et al., 1992b) resulted in cladistic patterns familiar from studies based on ribosomal DNA (rDNA) variation (e.g., monophyletic gymnosperms or combinations of gymnosperm lineages, a seed-plant "root" at the Gnetales, an angiosperm "root" at the monocots; see Troitsky et al., 1991; Zimmer et al., 1989; Hamby & Zimmer, 1992). These results,

however, are in conflict with cladistic studies based on morphological characters (see below). Ribosomal RNAs, with their structural and catalytic roles in protein translation, are obviously under enormous functional constraints. Like *rbc*L, rDNAs may also exhibit nearly clocklike substitutional behavior in those positions that are "free" to vary. If the absolute rates of change approximate the low values estimated for *rbc*L, analysis of corresponding time samples might be expected to result in corresponding patterns of homologous and parallel similarity, and therefore similar hierarchial reconstructions (cf. Donoghue & Sanderson, 1992: 347-349)

To gain insight into the topological effects of vastly asymmetrical time samples (see Fig. 2), we have combined rbcL information from "bryophytes," "pteridophytes," "gymnosperms," and angiosperms (Table 2). If the substitutional process is effectively clocklike among these taxa, some effects of functional constraints in land-plant rbcL evolution should be discernible (as may be spurious branch attractions; see The Rate "Problem," above); we explore this cladistically from both the primary nucleotide data as well as ad hoc nucleotide strings. The rbcL data are examined also at the

1994

Table 2. rbcL sequences used for data transformation and cladistic analysis. These are listed by taxon and by GenBank accession number and/or literature reference where sequence data first appeared. Voucher information, where available, is given by these sources.

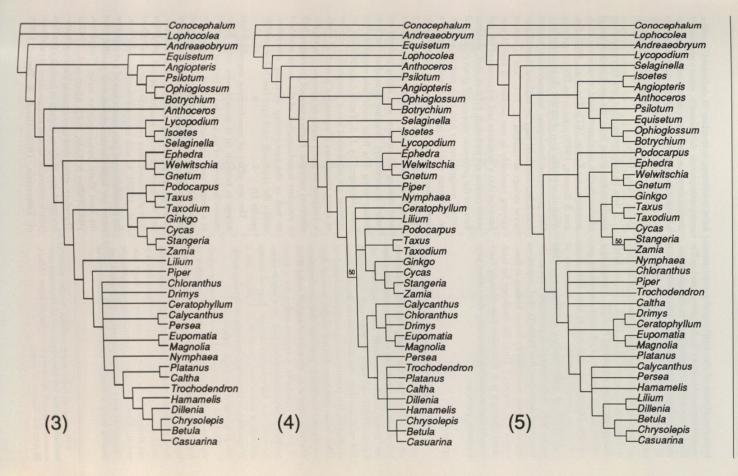
Taxon	GenBank accession or literature reference
Conocephalum conicum (L.) Lindb.	Mishler et al., 1994
Lophocolea heterophylla (Schrad.) Dumort.	Mishler et al., 1994
Anthoceros punctatus L.	Mishler et al., 1994
Andreaeobryum macrosporum Steere &	
B. Murray	Mishler et al., 1994
Ophioglossum engelmannii Prantl	L11058 (J. R. Manhart, in press)
Psilotum nudum (L.) P. Beauv.	L11059 (J. R. Manhart, in press)
soetes melanopoda J. Gay & Durieu	L11054 (J. R. Manhart, in press)
Lycopodium digitatum A. Br.	L11055 (J. R. Manhart, in press)
Angiopteris evecta (G. Forst.) Hoffm.	L11052 (J. R. Manhart, in press)
Equisetum arvense L.	L11053 (J. R. Manhart, in press)
Selaginella sp.	L11280 (J. R. Manhart, in press)
Botrychium biternatum (Sav.) Underwood	L13474 (J. R. Manhart, in press)
Taxus × media	Chase et al., 1993
Taxodium distichum (L.) Rich.	Soltis et al., 1992
Podocarpus gracilior Pilg.	X58135 (Bousquet et al., 1992)
Sinkgo biloba L.	Chase et al., 1993
Sycas revoluta L.	B. Schutzman, s.n., FLAS, (M. W. Chase, unpublished)
tangeria eriopus (Kunze) Baill.	Chase et al., 1993
Jamia inermis Vovides, J. D. Reese &	Chase et al., 1990
M. Vásquez-Torres	L12683 (Chase et al., 1993)
Sphedra tweediana C. A. Mey.	L12677 (Chase et al., 1993)
Velwitschia mirabilis Hook. f.	Chase et al., 1993 (G. R. Furnier)
netum gnemon L.	
Thloranthus is a series St. 1. 11	L12680 (Chase et al., 1993)
Chloranthus japonicus Siebold Liper betle L.	L12640 (Chase et al., 1993)
Orimus) Tanana i i i i i DO	L12660 (Chase et al., 1993)
Orimys) Tasmannia insipida DC.	L01957 (Albert et al., 1992c)
alycanthus chinensis Cheng & S. T. Chang	L12635 (Chase et al., 1993)
upomatia bennettii F. Muell.	L12644 (Chase et al., 1993)
lagnolia macrophylla L.	Golenberg et al., 1990
ersea americana Mill.	Golenberg et al., 1990
rochodendron aralioides Siebold & Zucc.	L01958 (Albert et al., 1992c)
eratophyllum demersum L.	M77030 (Les et al., 1991) plus nucleotides 1184-1428 from
larma I	Qiu et al., 1993
ymphaea odorata Aiton	M77035 (Les et al., 1991) plus nucleotides 1184-1428 from
H:	Qiu et al., 1993
ilium superbum L.	L12682 (Albert et al., 1992a)
latanus occidentalis L.	L01943 (Albert et al., 1992c)
altha palustris L.	L02431 (Albert et al., 1992c)
illenia indica L.	L01903 (Albert et al., 1992c)
hrysolepis (Castanopsis) sempervirens	
(Nellogg) Hjelma.	Chase et al., 1993
etula nigra L.	L01889 (Albert et al., 1992c)
asuarina litorea L.	L01893 (Albert et al., 1992c)
lamamelis mollis Oliv.	L01922 (Albert et al., 1992c)

amino acid level for hierarchic compatibility with the nucleotide and string evidence.

NUCLEOTIDES

The nucleotide is the smallest unit character available in DNA information. With only four states possible at any given site, nucleotide data are subject to parallelism among sequences when the number of changes per site, λ (= rate·time), becomes large. Unlike some morphological characters, nucleotide data are usually analyzed cladistically with no assumed transformation series (i.e., nonadditive steps; Fitch, 1971). For such procedures, Albert et al. (1993) examined the potential for spurious branch attraction under Felsenstein's (1978) simplified four-taxon scenario. State-change probabilities with Jukes-Cantor (Jukes & Cantor, 1969) and Kimura 2-parameter (Kimura, 1980) corrections for multiple changes at sites were considered in addition to observed changes only because of the prospect of reducing character-state parallelisms. All calculations indicated a very small parameter region under which branch attraction could be expected, provided that λ values remained small (i.e., less than approximately 0.1; see Albert et al., 1992a). For quasi-ultrametric data, differences in λ values must principally result from divergence time differences.

The bryophyte lineages examined here could easily be pre-Silurian; the pteridophytes no later than Devonian; the seed-plants appearing by the Carboniferous; the angiosperms by the Cretaceous, followed by their diversification through the Tertiary—a time range potentially spanning 500-5 million years before present. Thus, even without a priori knowledge of precise divergence times, it is reasonable to approximate upper and lower λ-bounds from this range and our estimates of total sequence divergence. The mean rate for woody taxa (Table 1), averaged for single lineages by halving the divergence value, is approximately 1.0×10^{-10} nucleotide substitutions per site per year. Similarly, the estimates for herbaceous taxa (Wendel & Albert, 1992) range between $2.5-3.5 \times 10^{-10}$. Assuming that bryophytes and pteridophytes fall into the range $1.0-3.5 \times 10^{-10}$ as well, λ values are estimated to lie between 0.05-0.175 (500 My) and 0.0005-0.00175 (5 My). On a four-taxon tree, some combinations of these values would yield spurious branch attractions (see Albert et al., 1993). Here, we are working with 40 taxa and a greater potential for inconsistent results (see Penny et al., 1991).


Data analysis. Nucleotide sequences (unambiguously aligned by sight and excluding the 30 5'-most positions, which incorporated only primer information for some taxa; Table 2) were analyzed with PAUP 3.1.1 (Swofford, 1993) using the Fitch criterion (Fitch, 1971; cf. Albert et al., 1993) with ACCTRAN (accelerated transformation) optimization (Farris, 1970; Swofford & Maddison, 1987). The heuristic search option was used with 100 random replicates of data addition sequence, COLLAPSE, MULPARS, and TBR (tree bisection-reconnection) branch-swapping. The consistency and

retention indices (C and R, respectively; Kluge & Farris, 1969; Farris, 1989a) were also calculated. Five hundred fifteen nucleotide positions showed patterns of similarity among taxa.

Eight equally parsimonious cladograms were found (C = 0.362 (including all data), R = 0.523). The strict and combinable component consensus trees (Bremer, 1990) were identical (see Fig. 3). All trees indicate that (i) hornworts are nested inside the tracheophyte clade, (ii) lycopods rather than ferns plus Equisetum represent the sister group to seed plants, (iii) Gnetales represent the sister group of all other seed plants, (iv) conifers, Ginkgo, and cycads form the monophyletic sister group to angiosperms, and (v) monocots are basalmost in the angiosperms, followed by Piper. Characteristics (iii) and (iv) are shared with the rDNA analysis of Hamby & Zimmer (1992) but not with the morphological analyses of Crane (1985), Doyle & Donoghue (1986, 1992), Loconte & Stevenson (1990), and Nixon et al. (1994). Characteristic (i) is in conflict with both morphological and molecular cladistic studies (Mishler & Churchill, 1985; Mishler et al., 1994, this issue). Characteristic (ii) contrasts both with morphological data (Bremer, 1985) and with the chloroplast genome structural findings of Raubeson & Jansen (1992) that link all tracheophytes except the lycopods, which have the plesiomorphic (i.e., liverwortlike) state. Characteristic (v) contrasts with the results of morphological (Donoghue & Doyle, 1989; Loconte & Stevenson, 1991; Taylor & Hickey, 1992) and some rDNA (Hamby & Zimmer, 1992; cf. Zimmer et al., 1989) analyses.

Function and phylogeny. Needless to say, not all of the above observations can represent the truth about land-plant history. The groups found in the nucleotide-based parsimony analysis (Fig. 3) may well reflect historical reality, but the nature of that reality could be other than strictly phylogenetic. From our argument about nearly clocklike rates and the functional constraints that may produce them, it is reasonable to suppose that some or even all of the branchings depicted in Figure 3 may reflect primarily spurious similarities rather than phylogenetic homologies. We have assessed possible constraints on rbcL evolution by examining the amino acid changes implied on the internal

FIGURES 3-5. Combinable component consensus trees summarizing the results of parsimony analyses of rbcL evidence as (3) nucleotide, (4) string, and (5) amino acid data. For (3), the strict consensus is identical; for (4) and (5), the single combinable components are indicated by the percentage of most parsimonious trees that resolve what would otherwise be polytomies. Implications of the different topologies are discussed in the text.

branches of one of the eight equally most-parsimonious trees (Appendix I). As summarized in Table 3, over 84% of the inferred nucleotide substitutions on internal branches are silent with regard to amino acid identity. The percentage of nucleotide changes incurring functionally labile amino acid replacements (judged using the PAM-250 logodds matrix of Dayhoff et al., 1978: 352; see Table 3) amount to an additional ≈ 13%. Viewed as a whole, 97.5% percent of all synapomorphous nucleotide changes are expected to have little or no effect on protein function. With a maximum of only 2.5% of these changes incurring non-labile amino acid replacements of potential structural/ functional distinction (see Table 3), rbcL sequences appear heavily burdened by forces leading to functional conservation.10 Thus, the challenge for landplant cladistics is to determine how strongly functionally constrained variation may also reflect phylogenetic patterns.

STRINGS

The ideal "unit" character in phylogenetic analysis is one that truly evolves as an independent unit, meaning one that independently undergoes transformations from one condition to another that are hierarchically correlated (i.e., congruent; cf. Farris, 1969) with those of other such characters. For molecular data, this may often be the individual nucleotide, but possibly also a contiguous length of DNA in an insertion/deletion event, several noncontiguous nucleotide positions that are functionally associated (e.g., because of higher order RNA or protein structure), a unique codon for a functionally constrained amino acid, or a whole chromosome in a karyological change. It is of course difficult to assess such possibilities a priori, but it is nonetheless important to begin to develop methods to examine the issue empirically.

We have thus examined some means by which the functional/phylogenetic evidence manifest in a given set of rbcL sequences might be represented by data forms other than nucleotide positions and their character states. The nucleotide is indeed the smallest unit character in rbcL evidence, but it is not necessarily the most informative nor most consistent. First, nonadditive optimization of multistate characters may restrict potential topological resolution (e.g., a 4-state, nonadditive character can

A data transformation that may overcome these

shortcomings stems from the early comparison of oligonucleotide catalogues (and even whole chromosomes; see Farris, 1978; Fox et al., 1980; Bremer & Bremer, 1989) prior to the DNA sequencing revolution: production of ad hoc nucleotide strings. Our procedure (analogous to generating mapped restriction site data) may be outlined thus: (i) generate strings of random A, T, G, and C content varying randomly in size between 6 and 21 base pairs (so that a minimum and maximum of two and seven codons are included), (ii) scan rbcL sequence data for the presence/absence of given strings, (iii) record recognitions by both base position and taxon, (iv) treat multiple positional recognitions by a given search string separately, (v) treat all recognitions found in two or more taxa as binary characters for cladistic analysis (sequences that have missing information at a string position are coded accordingly). Another procedure for producing string data from nucleotide sequences has been developed by J. S. Farris (unpublished); sequences are subdivided into a prespecified number of string characters ("supersites"), each of which is assigned as many states as necessary to explain observed variation. Farris's method guarantees both a complete transformation of the entire sequence as well as the non-overlap of string characters, unlike the approach used here (see below and Appendix II).

The net effect of transforming sequences into strings is twofold: (i) it incorporates more information (in terms of nucleotides or codons spanned) in a larger unit character, and (ii) decreases the probability that independent gains of the same character-state are represented in data matrices (although, in parsimony analyses, binary characters are more subject to spurious branch attraction than are nonadditive multistate characters; Albert et al., 1993). As with mapped restriction site data, the probabilities of gain versus loss of a recognition string are highly asymmetrical, with parallel gains the least likely transformation series (Templeton, 1983; DeBry & Slade, 1985; Albert et al., 1992a). Therefore, string data may contain historical markers much less likely to engage in branch attraction (which occurs because of accumulated parallelisms; cf. Felsenstein, 1978; Hendy & Penny, 1989;

have minimum homoplasy if optimized as three autapomorphies). Additionally, direct analysis of nucleotide sequences from protein-coding genes ignores constraints imposed both by the genetic code and protein function; codon positions may be both intra- and inter-correlated (Fitch & Markowitz, 1970; Fitch, 1986).

¹⁰ Patterns of codon usage intrinsic to the primary nucleotide matrix are also suggestive of functional constraints; these are discussed in a separate paper (Albert, Backlund & Bremer, in press).

Table 3. Analysis of character support for internal branches of tree #1 (of 8) from the nucleotide analysis. "Node" refers to the node numbers on the reference tree of Appendix I. "# changes" refers to the total number of nucleotide changes optimized onto a branch. "Constant" indicates that the nucleotide site belongs in a codon position that codes for the same amino acid throughout the entire matrix. "No change" indicates that the nucleotide site belongs in a codon position that codes for two or more amino acids throughout the matrix, but that the particular change indicated at this node does not cause a change in amino acid sequence. "Labile" means that the inferred change in amino acid due to the observed change in nucleotide sequence is likely to happen by random chance or better (according to the PAM-250 log-odds matrix of Dayhoff et al., 1978: 352). "Potentially nonlabile" indicates that at least one of the potential amino acid changes inferred from a particular nucleotide position is not likely to happen by random, but that there also are some changes in the same character that are likely to happen by random

chance or better. "Nonlabile" means that all inferred acid changes (often only one) occur at less than random chance.

Node	# changes	Constant	No change	Labile	Potentially nonlabile	Nonlabile
78-77	42	22	4	8	5	3
77-76	24	13	6	4	0	1
76-71	27	13	9	3	2	0
71-70	29	19	9	1	0	0
70-42	40	24	11	5	0	0
42-41	33	26	5	1	0	1
70-69	42	17	16	8	0	1
69-66	29	21	8	0	0	0
66-48	34	15	13	5	0	1
48-44	25	10	12	2	0	1
44-43	29	19	8	2	0	0
48-47	15	7	8	0	0	0
47-46	24	14	7	3	0	0
46-45	11	4	4	3	0	0
66-65	56	34	15	7	0	0
55-64	26	13	10	3	0	0
64-63	18	11	6	1	0	0
53-54	5	2	0	3	0	0
54-53	4	3	0	1	0	0
53-51	10	3	1	5	1	0
51-49	9	4	2	3	0	0
51-50	8	2	1	5	0	0
53-52	11	5	2	4	0	0
53-62	16	11	5	0	0	0
52-61	14	6	7	1	0	0
51-59	8	2	4	2	0	0
59-58	17	8	5	4	0	0
58-57	13	6	4	3	0	0
57-56	33	20	6	7	0	0
66-55	6	3	2	1	0	0
61-60	8	5	2	1	0	0
69-68	58	29	18	8	3	0
68-67	45	24	17	4	0	0
76-75	34	20	7	4	0	3
75-74	38	23	12	2	1	0
74-73	45	28	14	3	0	0
3-72	65	43	12	9	1	0
Σ	951	529	272	126	13	11
	100.00%	55.63%	28.60%	13.25%	1.37%	1.16%

84.23%

97.48%

Albert et al., 1992a, 1993) and much more likely to contain "blocks" of evolutionarily correlated information. Nevertheless, this information could be functionally constrained, as with primary nucleotide data. This possibility can be studied similarly by examining inferred amino acid changes on cladograms; each string character is easily traced to its recognized codons and component nucleotides.

Data analysis. One thousand random strings were generated for evaluation (see Appendix II). After scanning the 40 rbcL sequences, 193 positionally distinct string recognitions were recorded (mostly from small strings, the largest being from a 15-mer; see Appendix II). Of these, 112 identified two or more taxa. As there was no control in our procedure for string overlap, a number of string recognitions are non-independent with respect to nucleotides identified (see Appendix II). Therefore, our string data carry an experimental bias similar to what could occur with restriction site data representing mapped cleavage points for several endonucleases. The "supersites" string transform (J. S. Farris, unpublished) avoids this difficulty entirely, and if modified for the production of presence/absence data, would be identical to our intent but superior in execution. Nevertheless, our string data should suffice to explore biological non-independence of nucleotides (functional constraints); in fact, partial replication of nucleotide "blocks" could enhance detection of conserved regions. Cladistic analysis of the string characters was performed under the Wagner criterion (Kluge & Farris, 1969; Farris, 1970; see Albert et al., 1992a) using the same program and options mentioned previously; 165 equally parsimonious trees were found (C = 0.381 (including all data), R =0.524). The combinable component consensus tree differs from the strict by only one component (see Fig. 4).

The string data provide a different resolution of land-plant relationships than the nucleotide sequences (Figs. 3, 4). Notable differences include (i) Equisetum placed among the bryophytes, (ii) paraphyly of Psilotum + ferns and paraphyly of lycopods, (iii) sister-group status of Gnetales to angiosperms (with Piper basalmost), and (iv) paraphyly of angiosperms to conifers + (Ginkgo, cycads). Characteristics (i) and (iv) are in total conflict with other results (listed under Nucleotides, above), whereas (ii–iii) are not.

Function and phylogeny. It could be argued that cladograms produced from string-transformed data are better phylogenetic representations than those derived from nucleotides because the unit character is substantially less subject to parallel gains (see above). However, this attribute is distinct from the nature of the history conserved by string data; whole functional units may be incorporated into single characters. Gross differences in tree topology (including paraphyly of angiosperms) may simply result from different representations of functional and phylogenetic history in string versus nucleotide data forms.

We have studied possible functional constraints on rbcL evolution (as above) by examining the inferred amino acid changes on the internal branches of one of the 165 equally most-parsimonious string trees (Appendix II). Striking differences from the nucleotide-based analysis (Table 3) are shown in Table 4: only 45% of string transformations (changes in underlying nucleotide sequence) are silent with regard to amino acid identity (versus ca. 84% in the nucleotide analysis, a decrease by half), and functionally labile amino acid replacements amount to an additional 25% (versus ca. 13% in the nucleotide analysis, a relative increase). Thus, 70% of underlying nucleotide changes appear to be functionally neutral, whereas non-labile amino acid replacements amount to a maximum of 28% (an additional 2.1% are ascribed to internal stop codons, which may result from sequencing errors). This greater number of presumably functional changes in underlying nucleotides does indicate a greater chance that functional associations among particular nucleotides may bias tree construction.

The different substitutional patterns between nucleotide and string data can be explained by inherent properties of the latter. Each string recognition shared by two or more sequences comprises much more inclusive and conservative information than shared nucleotide identity at a given site. From our previous arguments about functional constraints in rbcL sequence evolution (see The Rate "Problem" and Nucleotides, above), the majority of string recognitions are expected to identify functionally conserved nucleotide motifs. The proportional reduction in discernible silent substitutions on the nucleotide level is likely due to the increased size of the functional units compared; with a 6 base-pair string, the chance of observing a nonsilent change is at least six times greater than for a single nucleotide position. The proportional increase in labile amino acid replacements can be explained through similar reasoning; if a string recognition identifies a functionally conserved motif, the larger the motif, the greater the likelihood that functional preservation need not require exact

TABLE 4. Analysis of character support for internal branches of tree #100 (of 165) from the string analysis. "Node" refers to the node numbers on the reference tree of Appendix II. "# changes" refers to the total number of string changes optimized onto a branch. "Constant" indicates that the string identifies codon positions that code for the same amino acid throughout the entire matrix. "Labile" means that the inferred change in amino acid due to the observed change in string recognition is likely to happen by random chance or better (according to the PAM-250 log-odds matrix of Dayhoff et al., 1978: 352). "Potentially nonlabile" indicates that at least one of the potential amino acid changes inferred from a particular string recognition is not likely to happen by random, but that there also are some changes in the same character that are likely to happen by random chance or better. "Nonlabile" means that all inferred amino acid changes (often only one) occur at less than random chance. "Internal stop" refers to string recognitions that identify internal stop codons, which may be sequencing artifacts.

Node	# changes	Constant	Labile	Potentially nonlabile	Nonlabile	Interna stop
77-76	7	3	3	1	0	0
76-75	7	5	2	0	0	0
75-74	6	1	1	2	1	1
74-73	4	4	0	0	0	0
73-72	4	4	0	0	0	0
72-42	4	2	2	0	0	0
42-41	9	4	3	1	1	0
72-71	4	1	1	2	0	0
71-70	6	4	2	0	0	0
70-43	5	oth legada Air	de de	3	0	0
70-69	2	2	0	0	0	0
69-66	7	3	i media	3	0	0
66-65	4	1	1	0	2	0
65-51	3	1	1	0	0	1
51-50	3	1	1	1	0	0
50-49	6	4	2	0	0	0
19-48	8	3	3	0	1	1
18-44	6	3	1	0	2	0
18-47	4	1	0	2	1	0
17-46	8	2	3	1	2	0
16-45	3	2	0	0	1	0
5-64	4	1	2	0	i	0
54-55	3	1	1	0	i	0
5-54	2	1	1	0	1	0
54-52	1	1	0	0	0	0
4-53	1	1	0	0	1	0
4-63	3	2	0	0	0	0
3-62	1	1	0	1	1	0
2-61	4	1	1	0	9	0
1-56	2	0	0	1	0	0
0-57	2	0	1	1	1	0
0-59	2	1	0	1	1	0
9-58	5	1	2	0	0	0
9-68	2	1	1	1	0	1
8-67	4	1	1	1	0 2	0
	10	6	1	1		
Σ	155	69	39	21	22	4
	100.00%	44.51%	25.16%	13.55%	14.19%	2.08%
		69.6	7%	27.7	4%	

amino acid identity. Strings recognizing regions of non-labile change, indicating potentially radical changes in structure and function among taxa, may represent another class of conserved information.

Again, these are probably found in greater proportion because of the larger size of the unit characters. Rather than being conserved because of functional constraints (as above), such recognitions may identify conserved markers for historical groups. Such changes may or may not have drastic physiological effects (see Hudson et al., 1990, on rbcL; cf. Perutz & Lehman, 1968; Nei, 1987: 270–271), but they could be of similar phylogenetic utility as chloroplast DNA rearrangements (e.g., Jansen & Palmer, 1987; Palmer et al., 1988; Bruneau et al., 1990; Lavin et al., 1990; Downie & Palmer, 1992; Downie et al., 1991; Raubeson & Jansen, 1992) if well characterized in relation to the crystal structure of the large-subunit protein (Chapman et al., 1988; Andersson et al., 1989; cf. Clegg, 1993).

AMINO ACIDS

Because rbcL nucleotide substitutions approximate a clock hypothesis (see The Rate "Problem," above), amino acid changes are expected to conform to the neutral hypothesis of molecular evolution (see Nei, 1987: 47-59, 409-412), although we do not directly address this issue here. Direct inference of trees can proceed from amino acids (yet another transformation of the same primary evidence). One limitation of using the amino acid sequences themselves is the "factoring-out" of all synonymous variation at the nucleotide level; this again may make it more likely that functional associations among characters may bias tree construction. Topological resolution may also be limited because amino acid data is optimized nonadditively (Fitch, 1971) and more than four states could be available for given characters (in the rbcL sequences examined here, the maximum is six states at four different positions). Nevertheless, the greater the number of character states, the lower the probability of character-state parallelism and spurious branch attraction (Albert et al., 1993). It could thus be argued that amino acid data might be more suitable for bridging large evolutionary time gaps, given a roughly constant rate of substitution combined with ignorance of potentially multiple synonymous nucleotide changes. Hence, we evaluated the amino acid data for hierarchic compatibility with the results of the nucleotide and string analyses.

Data analysis. After "translating" the 40 rbcL sequences, 66 (out of the 476) amino acid positions identified two or more taxa. Cladistic analysis of these characters was performed under the Fitch criterion (Fitch, 1971) using the same program and options mentioned previously; 104 equally parsimonious trees were found (C = 0.567 (in-

cluding all data), R = 0.554). The combinable component consensus tree preserved one more component than the strict (see Fig. 5).

The amino acid data provide yet another resolution of land-plant relationships (cf. Figs. 3, 4): (i) lycopods are polyphyletic, with *Isoetes* sister to *Angiopteris*, (ii) *Anthoceros* is embedded among fern allies, (iii) gymnosperms as a whole (with conifers polyphyletic) are the monophyletic sister group to angiosperms (with *Nymphaea* basalmost), and (iv) *Lilium* is sister to *Dillenia*. Except for gymnosperm monophyly as hypothesized from rDNA data (see Troitsky et al., 1991) these characteristics are in total conflict with all previous studies (listed under Nucleotides, above).

From the arbiter of congruence, large-subunit amino acid data are no more appropriate for bridging gaps in asymmetric time samples than nucleotide or string data. As argued above, the clocklike behavior of rbcL nucleotide substitution is expected to obtain also in the translated amino acid data; thus, λ values for amino acid changes (and so the likelihood of spurious branch attraction) should also be sensitive to differences in divergence times.

Function and phylogeny. Amino acid changes in rbcL are apparently subject to strong functional constraints (see Nucleotides and Strings, above). One could argue that amino acid data is less subject to the "noise" of neutrality, i.e., multiple silent changes at given nucleotide positions. However, selective neutrality may be roughly maintained by labile amino acid replacements, which could similarly "wobble" back and forth across evolutionary time. Only a small percentage of individual amino acids appears to be involved in function-changing evolutionary events (see Nucleotides, above).

PENULTIMATE CONCLUSIONS

We have demonstrated the problematic, functionally constrained nature of rbcL markers currently being used for phylogeny estimation by many workers. Three transformations of the same evidence produced discordant cladistic topologies and substantial incongruence with previous morphological cladistic results. Of course, we do not suggest that the growing rbcL database be abandoned. Rather, we suggest (as will be elaborated below) that all investigators involved with rbcL or other gene data take heed of standard and powerful cladistic procedures for discriminating cladistic history (homology) from homoplasy (functional parallelism and reversal).

TOTAL EVIDENCE AND CHARACTER CONGRUENCE

(I) ON CHARACTERS

Every character in a data matrix showing similarity between two or more taxa is optimized under parsimony as a discrete and independent piece of information. This holds whether or not the character represents a single taxic homology or only a portion of one (which is the case with correlated or contingent characters). A taxic homology used in parsimony analysis is expected to have a single functional history (even if this history changes over time; see Riedl, 1978; Donoghue, 1989; Donoghue & Sanderson, 1992); its cladistic utility (i.e., optimization as synapomorphy or homoplasy) is tested at maximum parsimony along with all other characters in a matrix. From our argument about shared functional history (constraints) in the evolution of rbcL, one might be tempted to equate a given taxic homology (e.g., nuclear versus cellular endosperm development) with the entire rbcL gene. However, unlike a given taxic homology, rbcL is composed of multiple, discrete points of information, that is, its ca. 1428 nucleotides. To a parsimony algorithm, each of these data points is equivalent to the single, nonadditive taxic homology statement "functional pollen unit in the Orchidaceae: monad, tetrad, massula, or pollinium," whatever its underlying complexity.

Hence, some workers have found cladistic philosophy and methodology at an impasse. For example, it has been argued that gene information could be combined with other characters either through multistate recoding of gene trees (Doyle, 1992) or through analysis of component compatibility among separately produced cladograms (Page, 1993). Legitimate concern over potentially separate phylogenetic histories led to these suggestions, but we argue below that both approaches unnecessarily restrict the information content of cladistic hierarchies, a feature fundamental to the superiority of parsimony methods (see Farris, 1979, 1983); in fact, parsimony itself arbitrates the supposed analytical quandary.

(II) ON EVIDENCE

For cladistic analysis, evidence is the body of available information that shows patterns of similarity among terminals. A specific set of evidence may be expressed in different forms; we have shown this property through different data transformations of the rbcL gene (above). Approaches that combine evidence in the form of tree components do so at the cost of information content (for recent

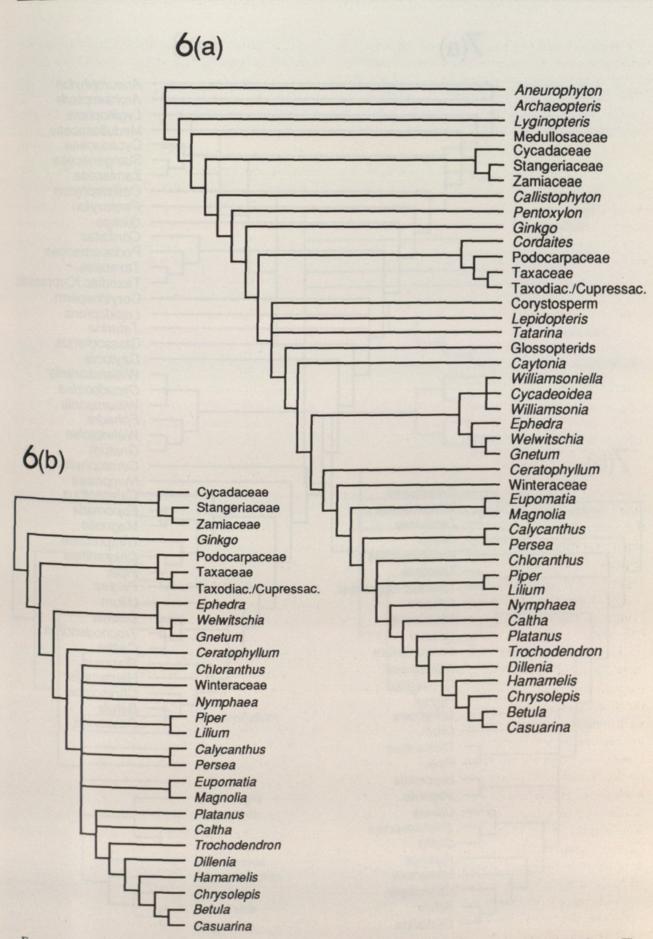
debate on this issue, see Jones et al., 1993; Nelson, 1993; Barrett et al., 1993; De Queiroz, 1993). In fact, acceptance of parsimony as the arbiter of synapomorphy and homoplasy seems methodologically counterintuitive to component combination, which does not directly use such information (see Doyle, 1992; Page, 1993). Parsimony, acting over all evidence, will provide estimates of congruence among character-state patterns while minimizing ad hoc assumptions (Farris, 1983). For example, some characters from a multigene family (gene duplication being part of the functional burden) may not show congruence with the body of retained synapomorphy because of paralogous histories (Fitch, 1970). Nevertheless, analysis of "total" evidence (sensu Kluge, 1989) gives each data point the opportunity both to affect hierarchy directly and to be diagnosed objectively, which is not the case when evidence is decomposed a priori and later combined or reconciled (cf. Doyle, 1992; Page, 1993). In conclusion, although a functionally constrained DNA sequence like the rbcL gene may appear to deserve the same rank as a given morphological character, it is more evidence-rich, and all of this evidence can be examined for hierarchic correlation (sensu Farris, 1969) with other data.

(III) AN EXAMPLE

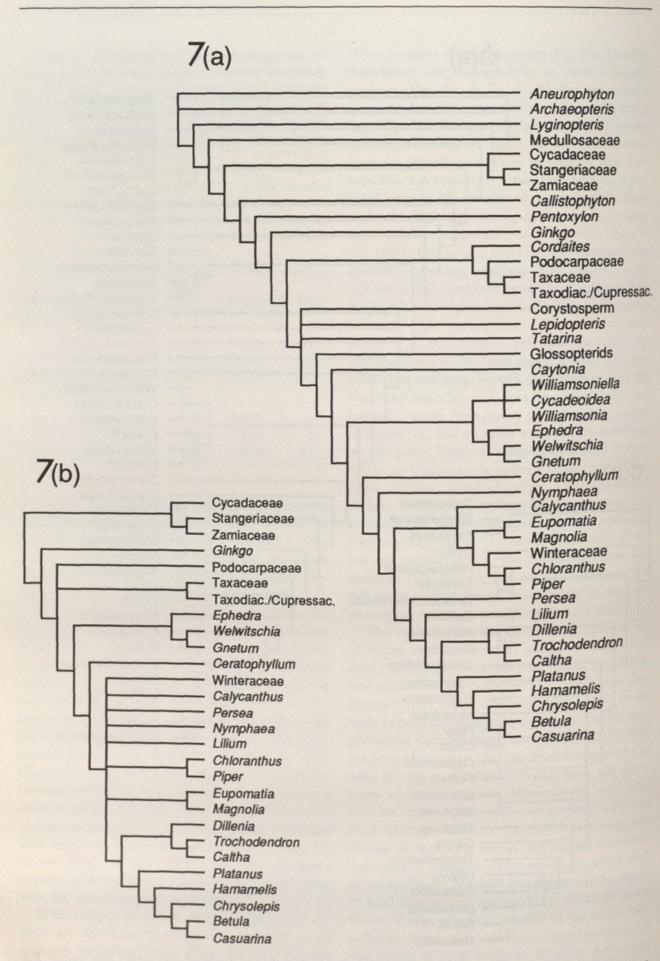
The extent to which rbcL evidence shows hierarchic correlation with other evidence should provide an objective measure of its freedom from biasing functional considerations, and consequentially, its phylogenetic utility. In this context, we examined character interaction between rbcL evidence and the primarily morphological seed-plant matrix of Nixon et al. (1994). Using the set of functional histories in the morphological matrix as a "constant," we tested the ability of different rbcL data forms (i.e., nucleotides, strings, and amino acids) to produce a unified representation of the same evidence. Two different sets of experiments were performed: (i) analyses including fossil taxa for which rbcL evidence is lacking (and therefore coded as missing data), and (ii) analyses of data for extant taxa only (the intersection of available evidence). To measure character congruence, we have used the retention index: the proportion of congruent similarity (i.e., synapomorphy) in a data matrix that is retained at maximum parsimony (see Farris, 1989a, b, 1991). Although retention is not directly comparable among different data matrices (see Goloboff, 1991), each matrix within our respective sets of experiments shares the same "constant." Additionally, each data transform of rbcL

TABLE 5. Homoplasy and character congruence statistics for total evidence analyses comprising morphological (Nixon et al., 1994; matrix version as of 8 November 1993) and rbcL data. Consistency (over all data) and retention indices are listed (see text), along with the number of trees found (see Figs. 6–8). For comparisons involving both fossil and extant taxa, 101 morphological similarities are relevant (symbolized by "N"); for extants only, there are 96 (symbolized by "Nex"). The numbers of relevant similarities for each rbcL data transform (nucleotides, strings, amino acids) are given in the text. For analyses including fossil taxa, rbcL evidence was represented as missing (i.e., "?").

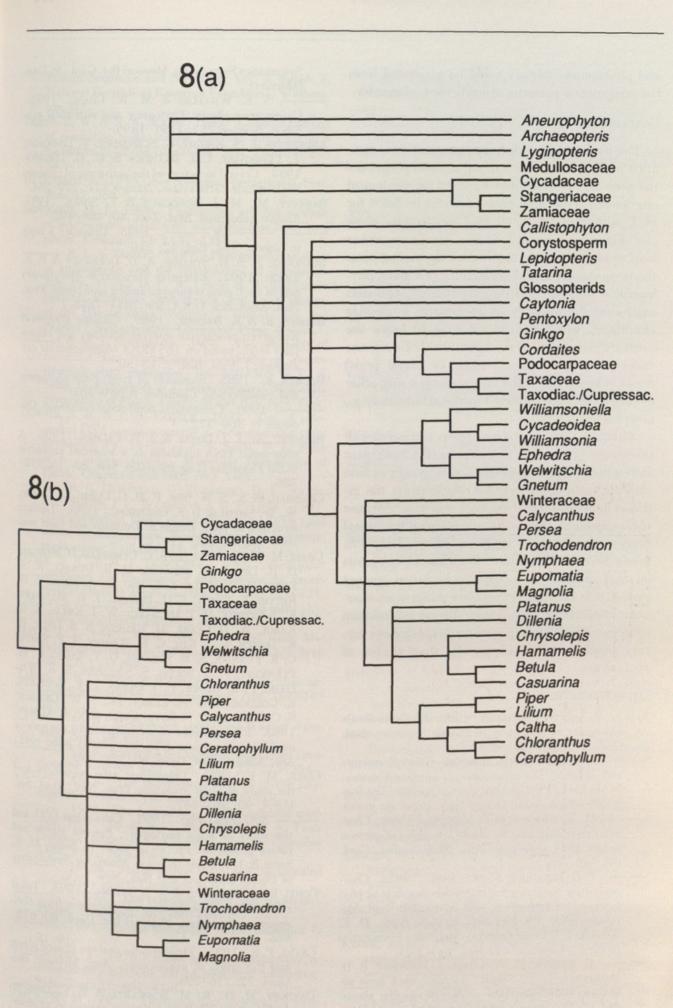
	Consis- tency	Retention	# Trees
Fossil plus extant taxa	STATE THE		
N + nucleotides	0.450	0.625	44
N + strings	0.402	0.685	22
N + amino acids	0.467	0.710	309
Extant taxa only			
N _{ex} + nucleotides	0.464	0.601	3
N _{ex} + strings	0.442	0.641	7
N _{ex} + amino acids	0.518	0.670	24


is assumed to be evidentially equivalent until shown otherwise (this assumption is obviously weaker for the string data, as they do not represent a completely saturated transformation of the nucleotide sequences). Finally, we do not use retention to suggest which analysis(es) may be "better."

The characters and cladistic reconstructions for living and fossil seed plants are described elsewhere (Nixon et al., 1994). We used the same parsimony methods outlined above to examine six combined matrices comparing all versus extant-only taxa and nucleotide/string/amino-acid rbcL data in all combinations. Consistency and retention indices for each analysis are reported in Table 5, and topological results are summarized in Figures 6-8. Character congruence, as measured through retention, is similar in magnitude (range < 0.1) across each set of experiments. Although topological resolution and component placements differ somewhat with respect to the rbcL data form used (Figs. 6-8; see Nixon et al., 1994), the rbcL evidence appears to be making a consistent statement along with the morphological evidence.


With respect to extant taxa, monophyletic cycads are the most topologically ancestral in all analyses including fossils (Figs. 6a-8a). Ginkgo appears either external to Cordaites plus conifers (Figs. 6a, 7a) or monophyletic with these taxa (Fig. 8a). In extant-only analyses, Ginkgo similarly intercalates between cycads and conifers (Figs. 6b,

7b) or remains sister to conifers (Fig. 8b). Conifers themselves are monophyletic in most combined analyses (Figs. 6a, b, 7a, 8a, b), but are partially unresolved in the extant-only analysis with string data (Fig. 7b). Every analysis resolves the Gnetales and Bennettitales as sister to the angiosperms. Ephedra is uniformly sister to Gnetum plus Welwitschia, but resolution within Bennettitales is provided only in the combined analysis with amino acid data (Fig. 8a). Ceratophyllum is placed sister to all other angiosperms (see Les, 1988; Chase et al., 1993; Qiu et al., 1993) in the combined nucleotide and string analyses (Figs. 6a, b, 7a, b), but not in the combined amino acid analyses (Fig. 8a, b), where it either nests well within angiosperms (sister to Chloranthus; Fig. 8a) or remains unresolved (Fig. 8b). Indeed, relationships within the angiosperms are the least stable among the combined data analyses. Woody magnoliids occupy the basalmost branches in Figure 6a, whereas the "paleoherb" taxon Nymphaea occupies this position in Figure 7a, and all other analyses are indecisive on this point. Eudicots (angiosperms with triaperturate or triaperturate-derived pollen; here, Platanus, Caltha, Trochodendron, Dillenia, Hamamelis, Chrysolepis, Betula, Casuarina) are monophyletic in the combined nucleotide and string analyses (Figs. 6a, b, 7a, b) (see Chase et al., 1993) but are polyphyletic in the combined amino acid analyses (Fig. 8a, b). For further discussion and reference to cladograms based solely on the morphological evidence, see Nixon et al. (1994).


The topological differences resulting from use of either rbcL nucleotide, string, or amino acid data might imply that different sets of morphological characters (of Nixon et al., 1994) show congruence with these different data forms. If one were to hold the evidential significance of the morphological data constant, one might identify those portions of primary rbcL nucleotide sequence that were incongruent under each data form and ignore them in future studies. Alternatively, one could take the opposite approach and ignore those Nixon et al. (1994) characters that were not congruent among all rbcL data forms. We suggest that either approach is nihilistic with respect to either rbcL or morphology; because congruence is an aspect of total interaction, the utility of either set of evidence is always judged relative to the other. Nevertheless, hierarchic correlation can be directed at one subset of total evidence if, as in the case of rbcL, it is reasonable to assume a single, unifying functional history. If an investigator were willing to hold all evidence except rbcL constant, hypotheses of correlation between functional constraints

FIGURES 6-8. Total evidence analyses of morphological and rbcL data for fossil and extant seed plants. The morphological data and taxon sampling of Nixon et al. (1994; matrix version as of 8 November 1993) was followed for cladistic analyses of fossil and living seed plants (the "a" series) and of extant seed plants only (the "b" series). For both taxonomic scopes, rbcL evidence was combined as one of three data forms: nucleotide sequences (6), nucleotide string recognitions (7), or amino acid sequences (8) obtained from single organisms (see Table 2). For

analyses including fossil taxa, rbcL character states were scored as missing (i.e., "?"; cf. Platnick et al., 1991; Swofford, 1993; 21-24). Topological results (from PAUP 3.1.1; Swofford, 1993) shown represent either single trees or the strict consensus (= combinable component consensus in all cases) of all most-parsimonious trees found (see Table 5). See text for further discussion.

and phylogenetic history could be generated from the congruence patterns of each rbcL character.

CONCLUSIONS

The phylogenetic informativeness of rbcL variation is obviously subject to any special properties the gene may have. Unlike for most morphological characters, some such properties can be listed for rbcL with confidence: (i) rbcL nucleotides show clocklike substitutional behavior, which may either help or hinder tree reconstruction depending upon the temporal depth and asymmetry of a given phylogenetic question; (ii) strong functional constraints exist over the majority of informative nucleotide characters, which is expected from (i) under the neutral theory; and (iii) the form that rbcL evidence takes (e.g., nucleotides, strings, or amino acids) does not appreciably affect its interaction with other evidence containing diverse functional histories (e.g., morphological data).

Although rbcL trees often appear consistent with taxonomic opinion (or are substantially congruent with other cladistic topologies), their power as lone cladistic tools will always be restricted by the intrinsic limits of internal evaluation of data. Because rbcL sequences clearly have a unifying functional history, simultaneous study of all available evidence become imperative. Functional constraints on rbcL, rDNA, or endosperm evolution are not expected to be similar; therefore patterns of character congruence among such diverse information sources will provide hypotheses of cladogenetic history significantly more powerful than studies of rbcL alone.

LITERATURE CITED

- ALBERT, V. A. & B. D. MISHLER. 1992. On the rationale and utility of weighting nucleotide sequence data. Cladistics 8: 73-83.
- , A. BACKLUND & K. BREMER. DNA characters and cladistics: The optimization of functional history. In Models in Phylogenetic Reconstruction. The Systematics Association, Oxford Univ. Press. (in press).

, M. W. Chase & B. D. Mishler. 1993. Character-state weighting for cladistic analysis of proteincoding DNA sequences. Ann. Missouri Bot. Gard.

80: 752-766.

-, B. D. MISHLER & M. W. CHASE. 1992a. Character-state weighting for restriction site data in phylogenetic reconstruction, with an example from chloroplast DNA. Pp. 369-403 in P. S. Soltis, D. E. Soltis & J. J. Doyle (editors), Molecular Systematics of Plants. Chapman and Hall, New York.

, K. Bremer, M. W. Chase, J. Manhart, B. D. MISHLER & K. C. NIXON. 1992b. rbcL gene sequences and phylogenetic studies of vascular plants. Pp. 13-14 in program booklet, "Origin and Relationships of the Major Plant Groups," 39th Annual

Systematics Symposium, Missouri Bot. Gard., St. Louis [abstract].

-, S. E. WILLIAMS & M. W. CHASE. 1992c. Carnivorous plants: Phylogeny and structural evolution. Science 257: 1491-1495.

ANDERSSON, I., S. KNIGHT, G. SCHNEIDER, Y. LINDOVIST, T. LUNDQVIST, C.-I. BRÄNDEN & G. H. LORIMER. 1989. Crystal structure of the active site of ribulosebisphosphate carboxylase. Nature 337: 229-234.

BARRETT, M., M. J. DONOGHUE & E. SOBER. 1991. Against consensus. Syst. Zool. 40: 486-493.

- & — ——. 1993. Crusade? A reply to Nelson. Syst. Biol. 42: 216-217.

BOUSQUET, J., S. H. STRAUSS, A. D. DOERKSEN & R. A. PRICE. 1992. Extensive variation in evolutionary rate of rbcL gene sequences among seed plants. Proc. Natl. Acad. Sci. U.S.A. 89: 7844-7848.

Bremer, B. & K. Bremer. 1989. Cladistic analysis of blue-green procaryote interrelationships and chloroplast origin based on 16S rRNA oligonucleotide catalogues. J. Evol. Biol. 2: 13-30.

Bremer, K. 1985. Summary of green plant phylogeny and classification. Cladistics 1: 369-385.

. 1990. Combinable component consensus. Cladistics 6: 369-372.

BRUNEAU, A., J. J. DOYLE & J. D. PALMER. 1990. A chloroplast DNA inversion as a subtribal character in the Phaseolae (Leguminosae). Syst. Bot. 15: 378-

CHAPMAN, M. S., S. W. SUH, P. M. G. CURMI, D. CASCIO, W. W. SMITH & D. S. EISENBERG. 1988. Tertiary structure of plant RuBisCo: Domains and their contacts. Science 241: 71-74.

CHASE, M. W., D. E. SOLTIS, R. G. OLMSTEAD, D. MORGAN, D. H. LES, B. D. MISHLER, M. R. DUVALL, R. A. PRICE, H. G. HILLS, Y.-L. QIU, K. A. KRON, J. H. RETTIG, E. CONTI, J. D. PALMER, J. R. MANHART, K. J. SYTSMA, H. J. MICHAELS, W. J. KRESS, K. G. KAROL, W. D. CLARK, M. HEDRÉN, B. S. GAUT, R. K. JANSEN, K.-J. KIM, C. F. WIMPEE, J. F. SMITH, G. R. Furnier, S. H. Strauss, Q.-Y. Xiang, G. M. Plunkett, P. S. Soltis, S. Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eguiarte, E. GOLENBERG, G. H. LEARN, JR., S. W. GRAHAM, S. C. H. BARRETT, S. DAYANANDAN & V. A. ALBERT. 1993. Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 528-580.

CLEGG, M. T. 1993. Chloroplast gene sequences and the study of plant evolution. Proc. Natl. Acad. Sci.

U.S.A. 90: 363-367.

& G. Zurawski. 1992. Chloroplast DNA and the study of plant phylogeny: Present status and future prospects. Pp. 1-13 in P. S. Soltis, D. E. Soltis & J. J. Doyle (editors), Molecular Systematics of Plants. Chapman and Hall, New York

CONTI, E., A FISCHBACH & K. J. SYTSMA. 1993. Tribal relationships in Onagraceae: Implications from rbcL sequence data. Ann. Missouri Bot. Gard. 80: 672-

685.

CRANE, P. R. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann. Missouri Bot. Gard. 72: 716-793.

DAYHOFF, M. O., R. M. SCHWARTZ & B. C. ORCUTT. 1978. A model of evolutionary change in proteins. Pp. 345-352 in M. O. Dayhoff (editor), Atlas of

Functional Constraints and rbcL Evidence

Protein Sequence and Structure, Vol. 5, Suppl. 3. National Biomedical Research Foundation, Washington, D.C.

- DEBRY, R. W. & N. A. SLADE. 1985. Cladistic analysis of restriction endonuclease cleavage maps within a maximum-likelihood framework. Syst. Zool. 34: 24-34.
- DE QUEIROZ, A. 1993. For consensus (sometimes). Syst. Biol. 42: 368-372.

DONOGHUE, M. J. 1989. Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution 43: 1137-1156.

& J. A. DOYLE. 1989. Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. Pp. 17-45 in P. R. Crane & S. Blackmore (editors), Evolution, Systematics, and Fossil History

of the Hamamelidae, Volume 1: Introduction and

"Lower" Hamamelidae. Clarendon Press, Oxford. & M. J. SANDERSON. 1992. The suitability of molecular and morphological evidence in reconstructing plant phylogeny. Pp. 340-368 in P. S. Soltis, D. E. Soltis & J. J. Doyle (editors), Molecular Systematics of Plants. Chapman and Hall, New York.

DOWNIE, S. R. & J. D. PALMER. 1992. Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. Pp. 14-35 in P. S. Soltis, D. E. Soltis & J. J. Doyle (editors), Molecular Systematics of Plants. Chapman and Hall, New York.

, R. G. Olmstead, G. Zurawski, D. E. Soltis, P. S. Soltis, J. C. Watson & J. D. Palmer. 1991. Six independent losses of the chloroplast DNA rpl2 intron in dicotyledons: Molecular and phylogenetic

implications. Evolution 45: 1245-1259.

DOYLE, J. A. & M. J. DONOGHUE. 1986. Seed plant phylogeny and the origin of angiosperms: An experimental cladistic approach. Bot. Rev. 52: 321-431. - & — . 1992. Fossils and seed plant phy-

logeny reanalyzed. Brittonia 44: 89-106. DOYLE, J. J. 1992. Gene trees and species trees: Molecular systematics as one-character taxonomy. Syst.

Bot. 17: 144-163.

FARRIS, J. S. 1969. A successive approximations approach to character weighting. Syst. Zool. 18: 374-

-. 1970. Methods for computing Wagner trees. Syst. Zool. 19: 83-92.

-. 1978. Inferring phylogenetic trees from chromosome inversion data. Syst. Zool. 27: 275-284.

-. 1979. The information content of the phylogenetic system. Syst. Zool. 28: 483-519.

-. 1983. The logical basis of phylogenetic analysis. Pp. 7-36 in N. I. Platnick & V. A. Funk (editors), Advances in Cladistics, Vol. 2. Columbia Univ. Press, New York.

-. 1989a. The retention index and the rescaled consistency index. Cladistics 5: 417-419.

-. 1989b. The retention index and homoplasy excess. Syst. Zool. 38: 406-407.

-. 1991. Excess homoplasy ratios. Cladistics 7: 81-91.

FELSENSTEIN, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27: 401-410.

FITCH, W. M. 1970. Distinguishing homologous from analogous proteins. Syst. Zool. 19: 99-113.

-. 1971. Toward defining the course of evolu-

tion: Minimum change for specific tree topology. Syst. Zool. 20: 406-416.

. 1986. The estimate of total nucleotide substitutions from pairwise differences is biased. Philos. Trans., Ser. B 316: 317-324.

- & E. MARKOWITZ. 1970. An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem. Genet. 4: 579-593.
- FOX, G. E., E. STACKEBRANDT, R. B. HESPELL, J. GIBSON, J. Maniloff, T. A. Dyer, R. S. Wolfe, W. E. Balch, R. S. TANNER, L. J. MAGRUM, L. B. ZABLEN, R. BLAKEMORE, R. GUPTA, L. BONEN, B. J. LEWIS, D. A. STAHL, K. R. LUEHRSEN, K. N. CHEN & C. R. Woese. 1980. The phylogeny of prokaryotes. Science 209: 457-463.
- GAUT, B. S., S. V. MUSE, W. D. CLARK & M. T. CLEGG. 1992. Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J. Molec. Evol. 35: 292-303.
- GOLENBERG, E. M., D. E. GIANNASI, M. T. CLEGG, C. J. SMILEY, M. DURBIN, D. HENDERSON & G. ZURAWSKI. 1990. Chloroplast DNA sequence from a Miocene Magnolia species. Nature 334: 656-658.

GOLOBOFF, P. A. 1991. Homoplasy and the choice among

cladograms. Cladistics 7: 215-232.

HAMBY, R. K. & E. A. ZIMMER. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. Pp. 50-91 in P. S. Soltis, D. E. Soltis & J. J. Doyle (editors), Molecular Systematics of Plants. Chapman and Hall, New York.

- HENDY, M. D. & D. PENNY. 1989. A framework for the quantitative study of evolutionary trees. Syst. Zool. 38: 297-309.
- HUDSON, G. S., J. D. MAHON, P. A. ANDERSON, M. J. GIBBS, M. R. BADGER, T. J. ANDREWS & P. R. WHITFELD. 1990. Comparisons for rbcL genes for the large subunit of ribulose-bisphosphate carboxylase from closely related C3 and C4 plant species. J. Biol. Chem. 265: 808-814.
- JANSEN, R. K. & J. D. PALMER. 1987. Chloroplast DNA from lettuce and Barnadesia (Asteraceae): Structure, gene localization, and characterization of a large inversion. Curr. Genet. 11: 553-564.
- JONES, T. R., A. G. KLUGE & A. J. WOLF. 1993. When theories and methodologies clash: A phylogenetic reanalysis of the North American ambystomatid salamanders. Syst. Biol. 42: 92-102.
- JUKES, T. H. & C. R. CANTOR. 1969. Evolution of protein molecules. Pp. 21-132 in H. N. Munro (editor), Mammalian Protein Metabolism. Academic Press, New York.
- KIMURA, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Molec. Evol. 16: 111-120.

-. 1983. The Neutral Theory of Molecular Evolution. Cambridge Univ. Press, Cambridge.

KLUGE, A. G. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38: 7-25.

& J. S. FARRIS. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1-32.

Kron, K. A. & M. W. Chase. 1993. Systematics of the Ericaceae, Empetraceae, Epacridaceae and related taxa based upon rbcL sequence data. Ann. Missouri Bot. Gard. 80: 735-741.

LAVIN, M. & M. LUCKOW. 1993. Origins and relationships of tropical North America in the context of the boreotropics hypothesis. Amer. J. Bot. 80: 1-14.

-, J. J. DOYLE & J. D. PALMER. 1990. Evolutionary significance of the loss of chloroplast-DNA inverted repeat in the Leguminosae subfamily Papilionoideae. Evolution 44: 390-402.

LES, D. H. 1988. The origin and affinities of the Cer-atophyllaceae. Taxon 37: 326-345.

-, D. K. GARVIN & C. F. WIMPEE. 1991. Molecular evolutionary history of ancient aquatic angiosperms. Proc. Natl. Acad. Sci. U.S.A. 88: 10119-10123.

LOCONTE, H. & D. W. STEVENSON. 1990. Cladistics of the Spermatophyta. Brittonia 42: 197-211.

-. 1991. Cladistics of the Magnoliidae. Cladistics 7: 267-296.

Manhart, J. R. Phylogenetic analysis of green plant rbcL sequences. Molecular Phylogenetics and Evolution (in press).

MISHLER, B. D. 1994. Cladistic analysis of molecular and morphological data. Amer. J. Phys. Anthropol.

94: 143-156.

· & S. P. Churchill. 1985. Transition to a land flora: Phylogenetic relationships of the green algae

and bryophytes. Cladistics 1: 305-328.

-, L. A. LEWIS, M. A. BUCHHEIM, K. S. RENZAGLIA, D. J. GARBARY, C. F. DELWICHE, F. W. ZECHMAN, T. S. KANTZ & R. L. CHAPMAN. 1994. Phylogenetic relationships of the "green algae" and "bryophytes." Ann. Missouri Bot. Gard. 81: 451-483.

NEI, M. 1987. Molecular Evolutionary Genetics. Co-

lumbia Univ. Press, New York.

NELSON, G. 1993. Why crusade against consensus? A reply to Barrett, Donoghue, and Sober. Syst. Biol. 42: 215-216.

NIXON, K. C., W. L. CREPET, D. STEVENSON & E. M. FRIIS. 1994. A reevaluation of seed plant phylogeny. Ann. Missouri Bot. Gard. 81: 484-533.

NORELL, M. A. & M. J. NOVACEK. 1992. Congruence between superpositional and phylogenetic patterns: Comparing cladistic patterns with fossil records. Cladistics 8: 319-337.

OLMSTEAD, R. G. 1989. Phylogeny, phenotypic evolution, and biogeography of the Scutellaria angustifolia complex (Lamiaceae); inference from morphological and molecular data. Syst. Bot. 14: 320-338.

PAGE, R. D. M. 1993. Genes, organisms, and areas: The problem of multiple lineages. Syst. Biol. 42: 77-

PALMER, J. D., B. OSORIO & W. F. THOMPSON. 1988. Evolutionary significance of inversion in legume chloroplast DNAs. Curr. Genet. 14: 65-74.

PENNY, D., M. D. HENDY & M. A. STEEL. 1991. Testing the theory of descent. Pp. 155-193 in M. M. Miyamoto & J. Cracraft (editors), Phylogenetic Analysis of DNA Sequences. Oxford Univ. Press, New York.

PERUTZ, M. F. & H. LEHMAN. 1968. Molecular pathology of human haemoglobin. Nature 219: 902-

PLATNICK, N. I., C. E. GRISWOLD & J. A. CODDINGTON. 1991. On missing entries in cladistic analysis. Cladistics 7: 337-343.

QIU, Y.-L., M. W. CHASE, D. H. LES, H. G. HILLS & C. R. PARKS. 1993. Molecular phylogenetics of the Magnoliidae: Cladistic analyses of nucleotide sequences of the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 587-606.

RAUBESON, L. A. & R. K. JANSEN. 1992. Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255: 1697-1699.

RIEDL, R. 1978. Order in Living Organisms. Wiley, New York.

RODMAN, J., R. A. PRICE, K. G. KAROL, E. CONTI, K. J. SYTSMA & J. D. PALMER. 1993. Nucleotide sequences of the rbcL gene indicate monophyly of mustard oil plants. Ann. Missouri Bot. Gard. 80: 686-699.

SOLTIS, P. S., D. E. SOLTIS & C. J. SMILEY. 1992. An rbcL sequence from a Miocene Taxodium (bald cypress). Proc. Natl. Acad. Sci. U.S.A. 89: 449-451.

Swofford, D. L. 1993. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1. Computer program and user's manual distributed by the Illinois Natural History Survey, Champaign, Illinois.

& W. P. Maddison. 1987. Reconstructing ancestral states under Wagner parsimony. Math.

Biosci. 87: 199-229.

SYTSMA, K. J., J. F. SMITH & P. E. BERRY. 1991. Biogeography and evolution of morphology, breeding systems, flavonoids, and chloroplast DNA in the four Old World species of Fuchsia (Onagraceae). Syst. Bot. 16: 257-269.

TAYLOR, D. W. & L. J. HICKEY. 1992. Phylogenetic evidence for the herbaceous origin of angiosperms.

Pl. Syst. Evol. 180: 137-156.

TEMPLETON, A. R. 1983. Phylogenetic inference from restriction endonuclease cleavage maps with particular reference to the evolution of humans and the apes. Evolution 37: 221-244.

TROITSKY, A. V., Y. F. MELEKHOVETS, G. M. RAKHIMOVA, V. K. Bobrova, K. M. Valiejo-Roman & A. S. ANTONOV. 1991. Angiosperm origin and early stages of seed plant evolution deduced from rRNA sequence comparisons. J. Molec. Evol. 32: 253-261.

WENDEL, J. F. & V. A. ALBERT. 1992. Phylogenetics of the cotton genus (Gossypium): Character-state weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Syst. Bot. 17: 115-143.

WILSON, M. A., B. GAUT & M. T. CLEGG. 1990. Chloroplast DNA evolves slowly in the palm family. Molec.

Biol. Evol. 7: 303-314.

ZIMMER, E. A., R. K. HAMBY, M. L. ARNOLD, D. A. LEBLANC & E. C. THERIOT. 1989. Ribosomal RNA phylogenies and flowering plant evolution. Pp. 205-214 in B. Fernholm, K. Bremer & H. Jörnvall (editors), The Hierarchy of Life: Molecules and Morphology in Phylogenetic Analysis. Elsevier Science Publishers, Amsterdam.

APPENDIX I (pp. 554-562).* Inferred amino acid changes on the internal branches of a nucleotide-based cladogram (one of eight equally most-parsimonious).

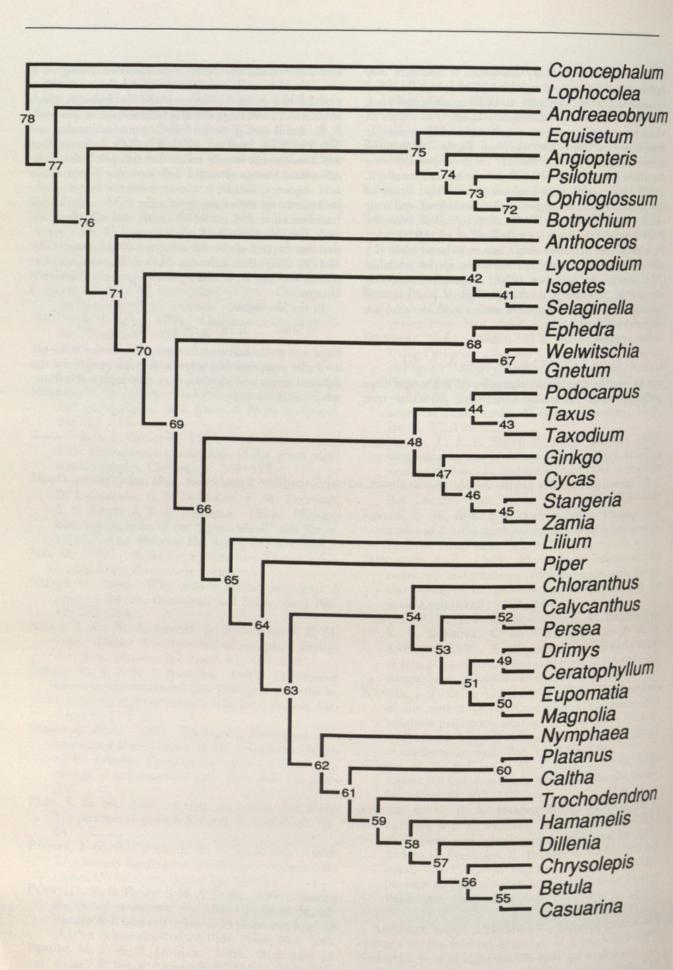
This table and accompanying cladogram contain information about the functional impact of specific nucle otide changes (as reflected by alterations in amino acid identity). Following the apomorphy list format of PAUP 3.1.1 (Swofford, 1993), each internal branch of the refFunctional Constraints and rbcL Evidence

erence tree is identified by the nodes it connects. For each node pair, optimized nucleotide changes are identified by position ("POS," i.e., the 1-1428 bases of the rbcL gene used), character consistency index ("c," each of which represents a separate contribution of the ensemble consistency of the entire tree; see Farris 1989a), the actual change inferred ("NUCΔ," with arrows following the conventions in the PAUP 3.1.1 manual; Swofford, 1993: 121), amino acid changes ("AA") that occur at this position (listed nondirectionally; see below), and their substitutional category ("SC") as determined from the PAM-250 log-odds matrix of Dayhoff et al. (1978: 352; log-odds scores of 0 and above are considered labile (L), whereas negative values are here considered nonlabile (NL); potentially nonlabile (PNL) indicates mixed-odds changes at the codon involving a given position, and synonymous changes (constant amino acid identity) are indicated by "-").

For example, a line of the following form

175
$$1.00 c \rightarrow g$$
 R, L, A NL

can be readily diagnosed: character 175 changes from nucleotide C to nucleotide G (on this particular tree;


constancy of character-state reconstruction among all 8 trees would be indicated by a double-lined arrow) with a c of 1.000 (i.e., no homoplasy), and the codon in which character 175 belongs changes between the amino acids R, L, and A (using standard IUB amino acid codes; see Nei, 1987: 24; Swofford, 1993: 67). Note, however, that this does not necessarily mean that this particular character-state change gives the indicated changes in amino acid sequence; rather, it merely indicates that it might be involved in the changes (i.e., the $C \rightarrow G$ nucleotide transformation may not affect amino acid identify at all; thus, the indicated amino acid changes are the "worst" that can happen under the influence of character 175). The NL designation indicates that any pairwise transformation between R, L, and A would represent a nonlabile change.

In the line below

486
$$0.167 \text{ a} \rightarrow \text{g}$$
 L, S -

there is a nucleotide transformation in position 486, yet it can be positively diagnosed as *not* responsible for the different amino acid identities in its associated codon (thus, the SC is given as "—").

^{*} Correction added in proof: P. 560, under "NODE 62-61," third line from bottom, right hand column, should read "L."

NODE 78-77			11760	0.250	a->g	E, D	-	NODE	E 70-	-42		
POS C NUCA	AA	sc			-	constant	-	POS	· c	NUCA	AA	sc
68 0.200 a->c	T, N	L	13630	0.167	c->t	constant	-	48	0.500	t=>c	constant	-
69 0.500 c->t	T, N	-						102	0.429	t=>c	constant	-
102 0.429 a->t		-	NODE					109	0.333	t->c	constant	-
150 0.231 a->t		L	Pos			AA	SC				D, E, K, T	L
165 0.231 a->t		NL				constant					constant	-
175 1.000 c->g		NL				constant	-				constant	-
186 0.222 a->c 204 0.375 a->t		-	138 0								constant	-
342 1.000 a=>c		-	165 0								Q,M,I,T,L,W constant	Г
345 0.333 t->c		_					-				constant	-
391 0.333 a=>c		L				constant					constant	-
405 0.222 t->a		-					-			a->g		-
433 0.250 a->t	T,V,S,I	PNL					-	648	0.200	t->c	constant	-
435 0.300 a->c	T,V,S,I	PNL	486 0	.167	a->g	L,S	-	690	0.429	t≈>c	A,G,T	-
552 0.200 t=>c		-	564 0	.214	t->a	A, V	-				constant	-
696 0.286 t=>a							-				constant	-
711 0.250 a->g	constant	-									constant	-
740 0.667 c=>g		L	682 0	.333	t->g	S, A				g->a t=>c		-
764 0.400 c=>a 767 0.333 g=>t	A, Q, E, V, H, I	NL				constant					constant	_
783 0.600 t->a	constant	- MT				V.M.A					constant	-
785 0.200 t->c	V.M.A			1000		V,M,A	L			a->g		-
786 0.500 a->t	V, M, A	L			-	H,Y,S,F		975	0.333	t=>c	constant	-
789 0.429 a=>t	constant	-				constant	-	982	0.182	g->t	A,S,T	L
810 0.333 a->g	constant	-	1021 0	.333	g->a	V, I, L, M	L	1005	0.375	t->c	constant	-
840 0.167 a=>g	L,S	-	10620	.500	c=>t	I,Y	-	1018	0.250	g->c	Q, E, D	L
844 0.200 c->t	H,Y,S,F	PNL	11980	.167	t->c	L,S				t->c		-
906 0.286 a->c	D, R	-				constant					K,R,E	-
958 0.500 t->a	L, M					Q, E, A					constant	-
1027 0.167 c->t 1035 0.250 c->t	constant					constant				g->a c->t		-
1038 0.500 a->t	constant		13980	.250	a->g	R, K, I	-					
	constant.							1206	0.111	L->C	constant	-
1072 0.500 a=>c	constant		NODE	71-	70						constant L.S	_
1072 0.500 a=>c	constant	-	NODE				80	1221	0.200	a=>g	L,S	-
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c	constant constant	-	Pos	c 1	NUCA	AA		1221 1236	0.200	a=>g a=>g		-
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t	constant constant constant	-	POS 88 0	c 1	NUC∆ g->a	E, K, Q, T	L	1221 1236 1260	0.200 0.333 0.250	a=>g a=>g	L,S constant constant	-
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a	constant constant constant constant	-	Pos	c 1.143	NUCΔ g->a a->c	E,K,Q,T P,L	L -	1221 1236 1260 1329 1335	0.200 0.333 0.250 0.600 0.167	a=>g a=>g t->c a=>g c->t	L,S constant constant D,E constant	
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c	constant constant constant constant constant		POS 88 0 138 0 150 0	c 1.143 .273 .231	g->a a->c t=>c	E,K,Q,T P,L	L	1221 1236 1260 1329 1335 1345	0.200 0.333 0.250 0.600 0.167 0.154	a=>g a=>g t->c a=>g c->t a=>t	L,S constant constant D,E constant A,S,T,C	- - - -
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t	constant constant constant constant constant H,Q		POS 88 0 138 0 150 0	c 1 .143 .273 .231 .111	g->a a->c t=>c a=>g	E,K,Q,T P,L A,P,S constant	L	1221 1236 1260 1329 1335 1345 1350	0.200 0.333 0.250 0.600 0.167 0.154 0.250	a=>g a=>g t->c a=>g c->t a=>t a->g	L,S constant constant D,E constant A,S,T,C constant	
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t	constant constant constant constant constant H, Q constant constant		POS 88 0 138 0 150 0 153 0 261 0	c 1.143 .273 .231 .111 .167	g->a a->c t=>c a=>g t->c	E,K,Q,T P,L A,P,S constant I,L	L	1221 1236 1260 1329 1335 1345 1350	0.200 0.333 0.250 0.600 0.167 0.154 0.250	a=>g a=>g t->c a=>g c->t a=>t a->g	L,S constant constant D,E constant A,S,T,C	- - - -
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a	constant constant constant constant constant H, Q constant constant	- - - - - - - L	POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1	c 1 .143 .273 .231 .111 .167 .167	g->a a->c t=>c a=>g t->c a->g c=>t	E,K,Q,T P,L A,P,S constant I,L constant constant	L	1221 1236 1260 1329 1335 1345 1350 1371	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200	a=>g a=>g t->c a=>g c->t a=>t a->g t->c	L,S constant constant D,E constant A,S,T,C constant	- - - L
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t	constant constant constant constant H,Q constant constant A,S,T,C A,S,T,C	- - - - - - L	POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0	c 1 .143 .273 .231 .111 .167 .167 .000 .333	g->a a->c t=>c a=>g t->c a->g t->c t->c	E,K,Q,T P,L A,P,S constant I,L constant constant	L	1221 1236 1260 1329 1335 1345 1350 1371	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200	a=>g a=>g t->c a=>g c->t a=>t a->g t->c	L,S constant constant D,E constant A,S,T,C constant constant	- - - - - -
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g	constant constant constant constant H,Q constant constant A,S,T,C A,S,T,C	- - - - - - - L	POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222	g->a a->c t=>c a=>g t->c a->g c=>t t=>c a->g	E,K,Q,T P,L A,P,S constant I,L constant constant constant	L	1221 1236 1260 1329 1335 1345 1350 1371	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200	a=>g a=>g t->c a=>g c->t a=>t a->g t->c	L,S constant constant D,E constant A,S,T,C constant constant	- - - - - -
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76	constant constant constant constant H, Q constant constant A, S, T, C A, S, T, C	- - - - - - L	POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0	c 1 .143 .273 .231 .111 .167 .167 .000 .333 .222 .167	muca g->a a->c t=>c a=>g t->c a->g c=>t t=>c a->g	E,K,Q,T P,L A,P,S constant I,L constant constant constant constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1	a=>g a=>g t->c a=>g c->t a=>t a->g t->c	L,S constant constant D,E constant A,S,T,C constant constant	- - - - L -
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA	constant constant constant constant donstant H, Q constant constant A, S, T, C A, S, T, C	- - - - - - - - - - -	POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 444 0	c 1 .143 .273 .231 .111 .167 .167 .000 .333 .222 .167	muca g->a a->c t=>c a=>g t->c a->g c=>t t=>c a->g c=>t	E,K,Q,T P,L A,P,S constant I,L constant constant constant constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1	a=>g a=>g t->c a=>g c->t a=>t a->g t->c 41 NUCA t->c	L,S constant D,E constant A,S,T,C constant constant	- - - L - -
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c	constant constant constant constant constant H, Q constant constant A, S, T, C A, S, T, C	- - - - - L L	POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167	muca g->a a->c t=>c a=>g t->c a->g c=>t t=>c a->g c=>t t=>c a->g	E,K,Q,T P,L A,P,S constant I,L constant constant constant constant constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600	a=>g a=>g t->c a=>g c->t a=>t a->g t->c 41 NJCA t->c t=>c	L,S constant D,E constant A,S,T,C constant constant	- - - L - -
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t	constant constant constant constant constant H, Q constant constant A, S, T, C A, S, T, C A constant constant constant	L L L	POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167	g->a a->c t=>c a=>g t->c a->g t->c a->g c=>t t=>c a->g c=>t t=>c a->g	E,K,Q,T P,L A,P,S constant I,L constant constant constant constant constant constant constant constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 267	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375	a=>g a=>g t->c a=>g c->t a=>t a->g t->c 41 NUCA t->c t=>c t=>c	L,S constant D,E constant A,S,T,C constant constant constant constant constant constant constant	- - - - - - -
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 567 1.000 a=>t	constant constant constant constant constant H, Q constant constant A, S, T, C A, S, T, C A constant constant v, P, L, T, I constant		POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 711 0	c 1.143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .167 .182 .250	g->a a->c t=>c a=>g t->c a->g c=>t t=>c a->g c=>t t=>c a->g c=>t t=>c a->g	E,K,Q,T P,L A,P,S constant I,L constant constant constant constant constant constant constant constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 267 297	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200	a=>g a=>g t->c a=>g c->t a=>t a->g t->c 41 NUCA t->c t=>c t=>c t=>c	L,S constant D,E constant A,S,T,C constant constant constant constant constant constant constant constant constant	L - - -
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 567 1.000 a=>t 660 0.167 t->c	constant constant constant constant constant H, Q constant constant A, S, T, C A, S, T, C AA constant		POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 711 0 720 0 7792 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .167 .167 .182 .250 .200 .500	g->a a->c t=>c a=>g t->c a=>g t->c a->g c=>t t=>c a->g c->t g->a	E,K,Q,T P,L A,P,S constant I,L constant L.S	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 267 297 324	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200 0.167	a=>g a=>g t->c a=>g c->t a=>t a->g t->c 41 NUCA t->c t=>c t=>c t=>c	L,S constant D,E constant A,S,T,C constant	sc
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 567 1.000 a=>t 660 0.167 t->c 816 0.750 t->a	constant constant constant constant constant H,Q constant constant A,S,T,C A,S,T,C AA constant		POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 720 0 792 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .167 .167 .182 .250 .200 .500 .250	g->a a->c t=>c a=>g t->c a->g t->c a->g c=>t t=>c a->g t->c a->g t->c a->g t->c a->g t->c	E,K,Q,T P,L A,P,S constant I,L constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 267 297 324 441	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200 0.167 0.286	a=>g a=>g t->c a=>g c->t a=>t a->g t->c 41 NUCA t->c t=>c t=>c t=>c t=>c	L,S constant constant D,E constant A,S,T,C constant	sc
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 567 1.000 a=>t 660 0.167 t->c 816 0.750 t->a 852 0.286 c->t	constant constant constant constant constant H,Q constant constant A,S,T,C A,S,T,C AA constant		POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 711 0 720 0 792 0 795 0 822 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .167 .182 .250 .200 .500 .250 .143	g->a a->c t=>c a=>g t->c a->g c=>t t=>c a->g c=>t t=>c a->g t->c a->g t->c a->g t->c t->c a->g t->c t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->c a->g t->c a->c a->c t->c t->c t->c t->c t->c t->c t->c t	E,K,Q,T P,L A,P,S constant I,L constant constant constant s,L F,C constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 267 227 227 324 441 459	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200 0.167 0.286 0.250	a=>g a=>g t->c a=>g c->t a=>t a->g t->c 41 NUCA t->c t=>c t=>c t=>c t=>c t=>c	L,S constant constant D,E constant A,S,T,C constant	sc
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 567 1.000 a=>t 660 0.167 t->c 816 0.750 t->a 852 0.286 c->t 876 0.143 c->t	constant constant constant constant constant H,Q constant constant A,S,T,C A,S,T,C AA constant	sc 	POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 720 0 792 0 795 0 822 0 876 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .167 .182 .250 .200 .500 .250 .143 143	g->a a->c t=>c a=>g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c t->c t->c a->g t->c	E,K,Q,T P,L A,P,S constant I,L constant constant constant s,L F,C constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 267 227 227 2441 441 459 528	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200 0.167 0.286 0.250 0.429	a=>g a=>g t->c a=>g c->t a=>t a->g t->c 41 NUCA t->c t=>c t=>c t=>c t=>c t=>c t=>c	L,S constant constant D,E constant A,S,T,C constant	sc
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 567 1.000 a=>t 660 0.167 t->c 816 0.750 t->a 852 0.286 c->t 876 0.143 c->t 927 0.231 g->t	constant constant constant constant constant H,Q constant constant A,S,T,C A,S,T,C AA constant		POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 711 0 720 0 792 0 795 0 822 0 876 0 981 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .167 .182 .250 .200 .500 .250 .143 .143	g->a a->c t=>c a=>g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c t->c t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c t->c t->c t->c t->c t->c t->c t->c	E,K,Q,T P,L A,P,S constant I,L constant constant constant s,L F,C constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 267 227 227 324 441 459 528 567	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200 0.167 0.286 0.250 0.167 0.286 0.250 0.167 0.286 0.375 0.200	a=>g a=>g t->c a=>g c->t a=>t a->g t->c 41 NUCA t->c t=>c t=>c t=>c t=>c t=>c t=>c t=>c	L,S constant constant D,E constant A,S,T,C constant	sc
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 567 1.000 a=>t 660 0.167 t->c 816 0.750 t->a 852 0.286 c->t 876 0.143 c->t 927 0.231 g->t 930 0.111 t=>c	constant constant constant constant constant H,Q constant constant A,S,T,C A,S,T,C AA constant		POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 711 0 720 0 792 0 795 0 822 0 876 0 981 0 1071 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .182 .250 .200 .500 .250 .143 .143 .143 .167	g->a a->c t=>c a->g t->c a->g c=>t t=>c a->g c=>t t->c a->g t->c a->g t->c a->g t->c t->c t->c t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c t->c t->c t->c t->c t->c t->c t->c	E,K,Q,T P,L A,P,S constant I,L constant constant constant constant constant constant s,L F,C constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 267 227 324 441 459 528 676 676	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200 0.167 0.286 0.250 0.167 0.286 0.250 0.167 0.286 0.375 0.200 0.375	a=>g a=>g t->c a=>g c->t a=>t a->g t->c 41 NUCA t->c t=>c t=>c t=>c t=>c t=>c t=>c t=>c t=	L,S constant constant D,E constant A,S,T,C constant	sc
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 567 1.000 a=>t 660 0.167 t->c 816 0.750 t->a 852 0.286 c->t 876 0.143 c->t 927 0.231 g->t 930 0.111 t=>c 960 1.000 a=>g 963 0.182 t->c	constant constant constant constant donstant H,Q constant constant A,S,T,C A,S		POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 711 0 720 0 792 0 795 0 822 0 876 0 981 0 1071 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .167 .167 .182 .250 .250 .143 .143 .143 .167 .250 .222	g->a a->c t=>c a=>g t->c a->g t->c a->g c=>t t=>c a->g t->c a->g t->c t->c t->c t->c t->c t->c t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c t->c t->c t->c t->c t->c t->c t->c	E,K,Q,T P,L A,P,S constant I,L constant constant constant s,L F,C constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 267 227 227 324 441 459 666 666 666	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200 0.167 0.286 0.250 0.250 0.200	a=>g a=>g t->c a=>g c->t a=>t a->g t->c 41 NUCA t->c t=>c t=>c t=>c t=>c t=>c t=>c t=>c t=	L,S constant constant D,E constant A,S,T,C constant	sc -
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 567 1.000 a=>t 660 0.167 t->c 816 0.750 t->a 852 0.286 c->t 876 0.143 c->t 930 0.111 t=>c 960 1.000 a=>g 963 0.182 t->c 981 0.143 c->t	constant constant constant constant donstant H,Q constant constant A,S,T,C A,S,T,C AA constant consta		POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 711 0 720 0 792 0 795 0 822 0 876 0 981 0 1071 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .167 .167 .182 .250 .250 .143 .143 .143 .167 .250 .222	g->a a->c t=>c a=>g t->c a->g t->c a->g c=>t t=>c a->g t->c a->g t->c t->c t->c t->c t->c t->c t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c t->c t->c t->c t->c t->c t->c t->c	E,K,Q,T P,L A,P,S constant I,L constant constant constant s,L F,C constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 267 225 267 297 324 441 459 666 666 670 670 718	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200 0.167 0.286 0.250 0.250 0.200 0.333	a=>g a=>g t->c a=>g c->t a=>t a->g t->c 41 NUCA t->c t=>c t=>c t=>c t=>c t=>c t=>c t=>c t=	L,S constant constant D,E constant A,S,T,C constant	sc -
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 567 1.000 a=>t 660 0.167 t->c 816 0.750 t->a 852 0.286 c->t 876 0.143 c->t 927 0.231 g->t 930 0.111 t=>c 960 1.000 a=>g 963 0.182 t->c 981 0.143 c->t 984 0.182 t->c	constant constant constant constant donstant H,Q constant A,S,T,C A,S,	SC NL	POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 711 0 720 0 792 0 795 0 822 0 876 0 981 0 1071 0 1128 0 1149 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .167 .167 .182 .250 .250 .143 .143 .167 .250 .222 .111	g->a a->c t=>c a=>g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c t->c t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c t->c t->c t->c t->c t->c t->c t->c	E,K,Q,T P,L A,P,S constant I,L constant constant constant s,L F,C constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 267 225 267 225 267 297 324 441 459 666 666 6702 6718 6744	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200 0.167 0.286 0.250 0.250 0.200 0.333 0.375 0.200 0.286 0.250 0.250 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.355 0.200 0.333 0.355 0.200 0.333 0.355 0.200 0.333 0.355	a=>g a=>g t->c a=>g c->t a=>t t->c 41 NUCA t->c t=>c t=>c t=>c t=>c t=>c t=>c t=>c t=	L,S constant constant D,E constant A,S,T,C constant	sc -
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 567 1.000 a=>t 660 0.167 t->c 816 0.750 t->a 852 0.286 c->t 876 0.143 c->t 927 0.231 g->t 930 0.111 t=>c 960 1.000 a=>g 963 0.182 t->c 981 0.143 c->t 984 0.182 t->c 1018 0.250 c->g	constant constant constant constant donstant H,Q constant constant A,S,T,C A,S,T,C AA constant consta		POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 711 0 720 0 792 0 795 0 822 0 876 0 981 0 1071 0 1128 0 1149 0 1168 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .167 .182 .250 .200 .500 .250 .143 .143 .167 .250 .222 .111 .250 .222	g->a a->c t=>c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c t->c t->c t->c t->c t->c t->c t->c	E,K,Q,T P,L A,P,S constant I,L constant constant constant s,L F,C constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 267 225 267 225 267 297 324 441 459 666 666 6702 6744 6768 6768	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200 0.167 0.286 0.250 0.250 0.200 0.333 0.375 0.200 0.286 0.250 0.250 0.260 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.333 0.355 0.200 0.333 0.355 0.200 0.333 0.355 0.200 0.333 0.355 0.200 0.333 0.355 0.200 0.333 0.355 0.200 0.333 0.355 0.200 0.333 0.355 0.200 0.333 0.355 0.200 0.333 0.355 0.200 0.333 0.355 0.200 0.333 0.355	a=>g a=>g t->c a=>g c->t a=>t a->g t->c 41 NUCA t->c t=>c t=>c t=>c t=>c t=>c t=>c t=>c t=	L,S constant constant D,E constant A,S,T,C constant	
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCΔ 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 567 1.000 a=>t 660 0.167 t->c 816 0.750 t->a 852 0.286 c->t 876 0.143 c->t 927 0.231 g->t 930 0.111 t=>c 960 1.000 a=>g 963 0.182 t->c 981 0.143 c->t 984 0.182 t->c 1018 0.250 c->g 1107 0.333 t=>a	constant constant constant constant H,Q constant constant A,S,T,C A,S,T,C AA constant consta		POS 88 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 711 0 720 0 792 0 795 0 822 0 876 0 981 0 1071 0 1128 0 1149 0 1168 0 1170 0	c 1.143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .167 .182 .250 .200 .500 .250 .143 .143 .143 .167 .250 .222 .111 .250 .222	g->a a->c t=>c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c a->g t->c t->c t->c t->c t->c t->c t->c t->c	E,K,Q,T P,L A,P,S constant I,L constant constant constant s,L F,C constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 267 225 267 225 441 459 666 670 676 676 676 676 6774 678 678 678 678 678 678 678 678 678 678	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200 0.167 0.286 0.250 0.250 0.200 0.333 0.375 0.200 0.167 0.286 0.250 0.250 0.250 0.375 0.200 0.333 0.375 0.200 0.333 0.375 0.200 0.167 0.286 0.250 0.250 0.250 0.250 0.375 0.200 0.333 0.250 0.365 0.250 0.365	a=>g a=>g t->c a=>g c->t a=>t a->g t->c 41 NUCA t->c t=>c t=>c t=>c t=>c t=>c t=>c t=>c t=	L,S constant constant D,E constant A,S,T,C constant	
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 567 1.000 a=>t 660 0.167 t->c 816 0.750 t->a 852 0.286 c->t 876 0.143 c->t 927 0.231 g->t 930 0.111 t=>c 960 1.000 a=>g 963 0.182 t->c 981 0.143 c->t 984 0.182 t->c 981 0.143 c->t 984 0.182 t->c 1018 0.250 c->g 1107 0.333 t=>a 1111 0.286 t=>a	constant constant constant constant constant H,Q constant constant A,S,T,C A,S,T,C AA constant consta		POS 888 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 711 0 7720 0 7792 0 7795 0 822 0 876 0 981 0 1071 0 1128 0 1149 0 1179 0 1245 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .167 .162 .250 .200 .500 .250 .143 .143 .167 .250 .222 .111 .250 .143 .400 .200	g->a a->c t=>c a=>g t->c a=>g t->c a->g t->c a->g t->c a->g t->c a->c t->c a->c t->c a->c t->c a->c t->c a->c t->c a->c a->c a->c a->c a->c a->c a->c a	E,K,Q,T P,L A,P,S constant I,L constant constant constant constant constant constant tonstant constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 2267 227 324 441 459 676 676 676 670 670 670 670 670 670 670	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200 0.167 0.286 0.250 0.250 0.200 0.333 0.250 0.200 0.260 0.275 0.286 0.250 0.200 0.333 0.250 0.200 0.200 0.333 0.250 0.200 0.200 0.200 0.333 0.375 0.200 0.200 0.200 0.333 0.375 0.200 0.200 0.200 0.333 0.375 0.200 0.200 0.250	a=>g a=>g t->c a=>y t->c a=>t a->g t->c 41 NUCA t->c t=>c t=>c t=>c t=>c t=>c t=>c t=>c t=	L,S constant constant D,E constant A,S,T,C constant	
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 660 0.167 t->c 816 0.750 t->a 852 0.286 c->t 876 0.143 c->t 927 0.231 g->t 930 0.111 t=>c 960 1.000 a=>g 963 0.182 t->c 981 0.143 c->t 984 0.182 t->c 981 0.143 c->t 984 0.182 t->c 1018 0.250 c->g 1107 0.333 t=>a 1111 0.286 t=>a 1113 0.500 a=>g	constant constant constant constant constant H,Q constant constant A,S,T,C A,S,T,C AA constant L,M C,S constant A,S,T Q,E,D Constant L,M,T		POS 888 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 711 0 7720 0 7792 0 7795 0 822 0 876 0 981 0 1071 0 1128 0 1149 0 1179 0 1245 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .167 .162 .250 .200 .500 .250 .143 .143 .167 .250 .222 .111 .250 .143 .400 .200	g->a a->c t=>c a=>g t->c a=>g t->c a->g t->c a->g t->c a->g t->c a->c t->c a->c t->c a->c t->c a->c t->c a->c t->c a->c a->c a->c a->c a->c a->c a->c a	E,K,Q,T P,L A,P,S constant I,L constant constant constant s,L F,C constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 2267 227 324 441 459 676 676 670 670 670 670 670 670 670 670	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200 0.167 0.286 0.250 0.286 0.250 0.200 0.167 0.286 0.250 0.260 0.275 0.286 0.250 0.275 0.286 0.250 0.275 0.286 0.250 0.275 0.286 0.250 0.275 0.286 0.250 0.275 0.286 0.250 0.275 0.286 0.250 0.275 0.286 0.250 0.275 0.286 0.250 0.275 0.286 0.250 0.275 0.286 0.250 0.275 0.286 0.250 0.275 0.286 0.250 0.275 0.286 0.250 0.275 0.286 0.250 0.275 0.286 0.250 0.286 0.250 0.286 0.250 0.286 0.250 0.286 0.250 0.286 0.250 0.286 0.250 0.286 0.250 0.286 0.250 0.286 0.250 0.286 0.250 0.286 0.250 0.286 0.250 0.286 0.250 0.260 0.275 0.286 0.250 0.266 0.250 0.266 0.250 0.266 0.250 0.266 0.250 0.266 0.250 0.266 0.250 0.266	a=>g a=>g t->c a=>y t->c a=>t a->g t->c 41 NUCA t->c t=>c t=>c t=>c t=>c t=>c t=>c t=>c t=	L,S constant constant D,E constant A,S,T,C constant	
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 567 1.000 a=>t 660 0.167 t->c 816 0.750 t->a 852 0.286 c->t 876 0.143 c->t 927 0.231 g->t 930 0.111 t=>c 960 1.000 a=>g 963 0.182 t->c 981 0.143 c->t 984 0.182 t->c 981 0.143 c->t 984 0.182 t->c 1018 0.250 c->g 1107 0.333 t=>a 1111 0.286 t=>a 1113 0.500 a=>g 1116 0.222 a->t	constant constant constant constant H,Q constant constant A,S,T,C A,S,T,C AA constant L,M C,S constant L,M C,S constant L,M,T L,M,T L,M,T P,A	SC NL	POS 888 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 711 0 7720 0 7792 0 7795 0 822 0 876 0 981 0 1071 0 1128 0 1149 0 1179 0 1245 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .167 .162 .250 .200 .500 .250 .143 .143 .167 .250 .222 .111 .250 .143 .400 .200	g->a a->c t=>c a=>g t->c a=>g t->c a->g t->c a->g t->c a->g t->c a->c t->c a->c t->c a->c t->c a->c t->c a->c t->c a->c a->c a->c a->c a->c a->c a->c a	E,K,Q,T P,L A,P,S constant I,L constant constant constant constant constant constant tonstant constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 2267 227 324 441 459 676 676 670 670 670 670 670 670 670 670	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200 0.167 0.286 0.250 0.250 0.260 0.275 0.286 0.250 0.260 0.375 0.200 0.333 0.375 0.200 0.286 0.250 0.260 0.275 0.286 0.250 0.260 0.275 0.286 0.250 0.260 0.275 0.286 0.250 0.260 0.275 0.286 0.250 0.260 0.275 0.286 0.250 0.260 0.275 0.286 0.250 0.260 0.275 0.286 0.250 0.260 0.275 0.286 0.250 0.260 0.275 0.286 0.250 0.260 0.275 0.286 0.250 0.260 0.275 0.286 0.250 0.260 0.275 0.286 0.250 0.260 0.275 0.286 0.250 0.260 0.275 0.286 0.250 0.260 0.275 0.286 0.250 0.275 0.286 0.250 0.250 0.260 0.275	a=>g a=>g t->c a=>y t->c a=>t a->g t->c 41 NUCA t->c t=>c t=>c t=>c t=>c t=>c t=>c t=>c t=	L,S constant constant D,E constant A,S,T,C constant	
1072 0.500 a=>c 1095 0.500 a=>t 1101 0.250 t->c 1134 1.000 a->t 1212 0.429 t=>a 1227 0.286 t=>c 1260 0.250 c->t 1290 1.000 a=>t 1345 0.154 g->a 1346 0.125 c=>g NODE 77-76 POS c NUCA 120 0.167 t->c 357 0.286 t->c 426 1.000 a=>t 660 0.167 t->c 816 0.750 t->a 852 0.286 c->t 876 0.143 c->t 927 0.231 g->t 930 0.111 t=>c 960 1.000 a=>g 963 0.182 t->c 981 0.143 c->t 984 0.182 t->c 981 0.143 c->t 984 0.182 t->c 1018 0.250 c->g 1107 0.333 t=>a 1111 0.286 t=>a 1113 0.500 a=>g	constant constant constant constant H,Q constant constant A,S,T,C A,S,T,C AA constant L,M C,S constant L,M,T C,S constant L,M,T C,S constant L,M,T	SC NL	POS 888 0 138 0 150 0 153 0 261 0 315 0 342 1 387 0 405 0 414 0 510 0 519 0 711 0 7720 0 7792 0 7795 0 822 0 876 0 981 0 1071 0 1128 0 1149 0 1179 0 1245 0	c 1 .143 .273 .231 .111 .167 .000 .333 .222 .167 .167 .167 .162 .250 .200 .500 .250 .143 .143 .167 .250 .222 .111 .250 .143 .400 .200	g->a a->c t=>c a=>g t->c a=>g t->c a->g t->c a->g t->c a->g t->c a->c t->c a->c t->c a->c t->c a->c t->c a->c t->c a->c a->c a->c a->c a->c a->c a->c a	E,K,Q,T P,L A,P,S constant I,L constant constant constant constant constant constant tonstant constant	L	1221 1236 1260 1329 1335 1345 1350 1371 NODE POS 132 189 207 225 2267 227 227 227 227 227 227 227 227 22	0.200 0.333 0.250 0.600 0.167 0.154 0.250 0.200 42- c 1 0.286 0.375 0.600 0.333 0.375 0.200 0.167 0.286 0.250 0.250 0.266 0.250 0.266 0.250 0.266 0.250 0.266 0.250 0.266 0.250 0.266 0.250 0.266 0.250 0.266 0.275 0.286 0.250 0.266 0.275 0.286 0.250 0.266 0.250 0.266 0.250 0.266 0.275 0.286 0.250 0.266 0.266	a=>g a=>g t->c a=>y t->c a=>t a->g t->c 41 NUCA t->c t=>c t=>c t=>c t=>c t=>c t=>c t=>c t=	L,S constant constant D,E constant A,S,T,C constant	

```
996 0.400 a=>g constant - 279 0.167 a=>g constant - 456 0.222 t->a constant -
1011 0.429 a=>g constant - 315 0.167 g->a constant - 471 0.500 t=>g A,V - 1021 0.333 a->g V,I,L,M L 412 0.200 t=>c S,L - 505 0.200 c->t constant - 1095 0.500 t=>c constant - 505 0.200 t->c constant - 538 0.400 t=>c L,I -
POS C NUCA AA SC
                                                                                 10 0.500 a->c - excluded,
18 0.333 g->a - excluded,
 201 0.250 t=>c constant - NODE 66-48
 246 0.333 t=>a constant - POS c NUCA AA SC 81 0.333 t=>a constant - 271 0.250 g=>c P,A,V,T L 33 0.500 t=>c V,S,F,D,A - 258 0.333 c=>t G,D,E,N,H - 318 0.250 t=>c constant - 84 0.214 g=>a D,E,Q - 284 0.286 a=>g N,D,S,T,E,G L 321 0.333 g=>t constant - 138 0.273 c=>t P,L - 318 0.250 c=>t constant -
11160.222 t=>a P,A

11230.250 t=>c L,S,F,I,M L 12450.200 a->t constant -

12230.429 G=>a Constant - 13200.143 g=>a Q,E,A - NODE 48-47
 1330 0.167 a->g I,V L 1332 0.500 t=>g I,V - POS C NUCA AA
1389 0.143 a->g constant - 1359 0.286 t->c P,A,L - 39 0.333 c=>t constant
1392 0.143 a->g constant - 1416 0.667 g->t I,M,V,W L 150 0.231 c=>t A,P,S
1422 0.429 g=>t T,V,L,K - 159 0.167 a=>g constant
                                                                                                                                           SC
POS c NUCΔ AA SC NODE 48-44

90 0.250 g->a E,K,Q,T - POS c NUCΔ AA SC 603 0.143 g->a constant
144 0.333 a->g constant - 90 0.250 a->g E,K,Q,T - 741 0.111 t->c S,C,Y

177 0.300 t=>c R,L,A - 147 0.154
 NODE 69-66
 177 0.300 t=>c R,L,A - 147 0.154 a=>c constant - 861 0.143 c->t constant 264 0.333 a->g D,E - 264 0.333 g->a D,E - 906 0.286 t=>c D,R 267 0.375 t=>c P,T - 276 0.286 g->a constant - 1212 0.429 a=>g constant 276 0.286 a->g constant - 393 0.231 a->g R,P - 1269 0.600 t->c constant
```

1410 0.429 a->g E,D,A,K,P,Q - 522 0.286 c->t constant - NODE 64-63 14201.000 a->g T,V,L,K - 537 0.429 t->a constant - POS c NUCΔ AA SC 14210.667 c->t T,V,L,K - 579 0.375 t->c constant - 150 0.231 c=>t A,P,S -1425 0.429 a->g L,V,C - 582 0.167 t=>c constant - 153 0.111 a->g constant 618 0.333 a=>g constant - 309 0.143 t=>c constant NODE 47-46

RODE 47-46

621 0.250 t=>c constant - 378 0.500 c->g constant - 378 0.500 c->g constant - 378 0.143 t=>c constant - 378 0.500 c->g constant - 378 0.1500 c->g constant - 378 0.1250 c->g constant - 378 0.1250 c->g constant - 378 0.111 a->g constant - 378 519 0.182 t->c constant - 912 0.333 a=>g constant - 1320 0.143 g=>a Q,E,A - 522 0.286 c->t constant - 933 0.143 c->t constant - 1380 0.200 a=>g E,A - 552 0.200 t->c constant - 984 0.182 c->t A,S,T - 660 0.167 t=>c constant - 990 0.500 t->a T,I - NODE 63-54

753 0.188 g->a L,M,I L 1005 0.375 t=>g constant - POS c NUCA AA SC 807 0.250 t=>c constant - 1017 0.333 a->c constant - 84 0.214 g=>c D,E,Q L 834 0.600 t=>c T,M - 1020 0.200 a->g Q,E,D - 433 0.250 t->a T,V,S,I L 957 0.400 t->a R,C - 1060 0.333 a->g Y,F,C,L - 546 0.250 t=>c constant - 963 0.182 t->c C,S - 1107 0.333 a->c constant - 672 0.300 t->c constant - 1067 1.000 a=>g K,R,E L 1131 0.333 a->g constant - 1020 0.200 g->c Q,E,D L 1194 0.250 t=>c constant - 1266 0.429 t=>g constant - 1007 54.53 519 0.182 t->c constant - 912 0.333 a=>g constant - 1320 0.143 g=>a Q,E,A 1206 0.111 t =>c constant
1206 0.111 t =>c constant
1257 0.500 t =>g constant
1257 0.500 t =>g constant
1278 0.500 t =>g A,V
1330 0.167 g ->a I,V
1347 0.200 t ->c A,S,T,C

POS c NUCA AA
SC
1401 0.250 t =>c constant
1401 0.250 t =>c constant
1407 0.500 t ->c F,I,L
141 0.333 a =>g constant
1411 0.600 a ->c T,A,S,E,P

162 0.429 a =>c S,F,A
1266 0.111 t ->c constant
1266 0.429 t =>g constant
1278 0.500 t =>g constant
1278 0.500 t =>g A,V
1278 0.500 t =>c NUCA AA
SC
1330 0.167 g ->a I,V
1543 0.333 t =>c constant
1543 0.231 a ->g constant
1541 0.333 a =>g constant
162 0.429 a =>c NUCA AA
154 0.333 t =>c constant
154 0.231 a ->g constant
155 0.200 a ->t constant
165 0.429 a =>c NUCA AA
167 0.500 t ->c F,I,L
168 0.429 a =>c NUCA AA
175 0.500 t ->c NUCA AA
186 0.143 c ->a E,K,Q,T
198 0.143 c ->a E,K,Q,T
198 0.143 c ->a E,K,Q,T
198 0.500 t ->c F,I,L
199 0.500 t ->c NUCA AA
198 0.143 c ->a E,K,Q,T
198 0.500 t ->c F,I,L
199 0.500 t ->c NUCA AA
198 0.143 c ->a E,K,Q,T
198 0.500 t ->c F,I,L
198 0.500 t ->c NUCA AA
198 0.143 c ->a E,K,Q,T
198 0.500 t ->c F,I,L
198 0.231 a ->g constant
198 0.143 c ->a E,K,Q,T
198 0.500 t ->c F,I,L
198 0.500 t ->c NUCA AA
198 0.231 a ->g constant
198 0.143 c ->a E,K,Q,T
198 0.500 t ->c F,I,L
198 0.500 t ->c F,I,L
198 0.500 t ->c F,I,L
198 0.500 t ->c NUCA AA
198 0.231 a ->g constant
198 0.143 c ->a E,K,Q,T
198 0.500 t ->c F,I,L
198 0.500 t ->c F,I 162 0.429 a=>g A,W - NODE 65-64 279 0.167 g=>a constant - NODE 65-64 162 0.429 a=>g A,W 279 0.167 g=>a constant NODE 65-64

284 0.286 a->c N,D,S,T,E,G L
741 0.111 c->t S,C,Y 762 0.333 a=>t A,Q,E,V,H,I L
762 0.333 a=>t A,Q,E,V,H,I L
763 0.400 a->c R,C 165 0.222 c=>t constant 1266 0.429 t=>c constant 1362 0.429 a=>g E,D 165 0.222 t->c constant 166 0.222 t->c constant 1764 0.222 t->c constant 1765 0.222 t->c constant 1767 0.400 a->c R,C 1768 0.222 t->c constant 1769 0.220 c=>a V,P,L,T,I L
1769 0.231 a=>t A,W 1760 0.231 a=>t A,W 1762 0.333 a=>t A,Q,E,V,H,I L
186 0.222 c=>t constant 1765 0.260 0.260 c=>t V,P,L,T,I L
1767 0.260 0.260 c=>t T,V,S,I L
1768 0.260 0.260 c=>t T,V,S,I L
1769 0.260 0.260 0.260 c=>t T,V,S,I L
1769 0.260 0.260 0.260 c=>t T,V,S,I L
1760 0.260 NODE 53-51 NODE 66-65

POS c NUCA AA

SC 673 0.111 a=>c L,I

62 0.500 g=>a R,K,T

63 0.188 g->a L,M,I

64 0.333 c->t constant

Constant SC 378 0.500 a->c constant - 13560.143 t->c constant 408 0.167 a->g constant - 1411 0.600 c->g T,A,S,E,P 450 0.214 t=>c constant - 1422 0.429 g=>c T,V,L,K 450 0.214 t=>c constant - 1422 0.429 g=>c T,V,E,E 453 0.273 a=>g constant - 1425 0.429 a->g L,V,C 462 0.429 t=>c constant 486 0.167 a->g L,S 492 0.250 a=>g constant

```
NODE 51-50

836 0.222 g->c S,I,T L 1245 0.200 g->c constant -

POS c NUCΔ AA SC 1278 0.500 g=>a A,V - 1345 0.154 a=>g A,S,T,C L

57 0.333 t=>g D,E L 1401 0.250 c=>t constant - 1346 0.125 g=>c A,S,T,C L

84 0.214 c=>a D,E,Q L 1347 0.200 c=>t A,S,T,C L

284 0.286 a=>g N,D,S,T,E,G L NODE 59-58 1362 0.429 a=>g E,D -

561 0.333 a=>c constant - 1400 0.500 c=>c N,D,S,T,E,G L NODE 59-58 1362 0.429 a=>g E,D -
813 0.231 a->g constant
NODE 58-57

NODE 63-62

POS c NUCA AA

SC 84 0.214 a=>c D,E,Q
L 1345 0.154 a=>t A,S,T,C
L

138 0.273 c=>t P,L
- 147 0.154 a=>g constant
- 225 0.333 c=>t constant
- 498 0.333 t=>c constant
- 248 0.333 t=>c constant
- 251 0.333 c=>g constant
- 655 0.250 t=>c L,V,C
- 60 0.250 c=>t constant
- 661 0.143 c=>t constant
- 684 0.300 a=>g S,A
- 81 0.303 d=>g C,A
- 1017 0.333 g=>a constant
- 753 0.188 c=>g L,M,I
- 1032 0.429 t=>c constant
- 1185 0.200 g=>a constant
- 1185 0.200 g=>a constant
- 1266 0.429 g=>a constant
- 1251 0.273 c=>t G,A
- 1264 0.333 a=>g constant
- 107 0.500 t=>c L,S,V
- 1345 0.200 t=>c constant
- 1260 0.220 c=>t constant
- 1270 0.500 t=>c Constant
- 1026 1.000 t=>c constant
- NODE 69-68
- POS c NUCA AA
- NODE 69-68
- POS c NUCA AA
- NODE 69-68
- POS c NUCA AA
- NODE 57-56

                                                                                                                                                                                           NODE 58-57
                                                                                                                                                                                                                                                                                                                                                                                    10261.000 t=>c constant
   1341 0.333 a->g constant - NODE 57-56
1341 0.333 a-yg constant - NODE 57-56

1356 0.143 c-yt constant - POS c NUCA AA

1422 0.429 c-yt T,V,L,K

1356 0.143 c-yt constant - POS c NUCA AA

1422 0.429 c-yt T,V,L,K

1356 0.143 c-yt constant - SC 306 0.375 t=ya A,V

1422 0.429 c-yt T,V,L,K

1351 0.167 c=yt constant - 351 0.167 c=yt constant - 366 0.667 t=yg constant - 372 0.250 a-yt constant - 373 0.231 a-yc R,P

165 0.231 t-yc A,W

176 0.286 g=ya constant - 384 0.375 c-ya P,T

177 0.286 g=ya constant - 384 0.333 a=yg constant - 424 0.200 c-ya V,P,L,T,I L 434 0.250 c=yt T,V,S,I PNL 420 0.250 t-yc I,V

178 0.260 0.270 t-yc I,V

178 0.300 t-ya constant - 441 0.286 t-ya constant - 441 0.286 t-ya constant - 444 0.300 g=ya S,A

179 0.333 g-yt constant - 537 0.429 g=ya constant - 445 0.167 c-yt F,C

189 0.429 a=yc D,E,K,T L L Score D,E,K,T L Score D,E,K,
                                                                                                                                                                                                                                                                                                                                                                                    282 0.429 a=>c D,E,K,T
  762 0.333 g->t constant - 537 0.429 g=>a constant - 495 0.167 t->c constant
  858 0.167 c=>t constant - 552 0.200 c=>t constant - 498 0.333 t->a constant
   1005 0.375 g->t constant - 588 0.400 a=>g constant - 528 0.429 a=>t constant
1015 0.500 c=>a constant - 621 0.250 c=>t constant - 538 0.400 t=>c L,I
1015 0.500 c=>a constant - 621 0.250 c=>t constant - 538 0.400 t=>c L,I

1111 0.286 a=>c L,M,T - 813 0.231 a=>c constant - 603 0.143 g->a constant

1113 0.500 g=>a L,M,T - 864 0.333 c=>t constant - 651 0.500 t=>c constant

1167 0.200 c=>t A,L - 963 0.182 t=>c C,S - 654 0.333 c=>t constant

1029 0.250 g=>a constant - 655 0.250 t=>g L,V,C

1058 0.500 t=>a Y,F,C,L L 657 1.000 a=>t L,V,C

1058 0.500 t=>a Y,F,C,L L 657 1.000 a=>t L,V,C

1071 0.167 c=>t constant - 666 0.500 a=>g constant

1077 0.300 c=>g R,L,A - 1077 0.200 t=>c constant - 684 0.300 t=>a S,A

290 0.125 a=>t Y,F L 1137 0.231 g=>a constant - 720 0.200 g=>a constant

564 0.214 g=>a A,V - 1176 0.250 g=>a E,D - 732 0.125 a=>g constant

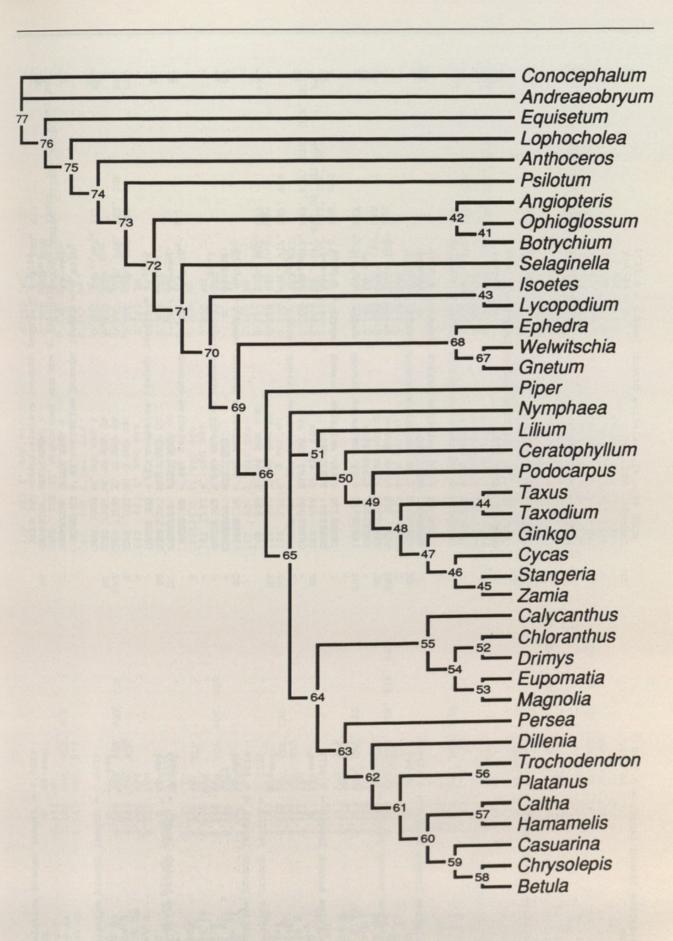
690 0.429 c=>t A,G,T - 1203 0.200 g=>a constant - 768 0.167 t=>c C,F
```

221 0 225 1 1 1							1022	0 400			
771 0.375 t=>a 792 0.500 c->t			NODE 76-	75						constant	nin-
804 0.250 c->t		-		NUCA		9.0				I,V,L	-
834 0.600 t->c		-			- excluded,	30				constant	-
836 0.222 g=>c		L	61 1.000			_	1116	0.222	t=>g	P, A	-
858 0.167 c=>t	constant	-	66 0.167		AND RESIDENCE OF THE PARTY OF T	-	1182	0.250	t->c	constant	-
865 0.167 c->t	L,P	-			E, K, Q, T	-	1287	0.200	a->g	Q, E, K	-
942 0.200 a=>g	L,S	-	189 0.375	t->c	constant	-	1350	0.250	a=>g	constant	-
957 0.400 t->a		-	195 0.750	a->c	constant					constant	-
981 0.143 c->t		-	207 0.600			-				constant	-
1038 0.500 t=>g					constant	-	1401	0.250	t=>c	constant	-
1128 0.222 c->t 1192 1.000 t=>g		- L	345 0.333			-	NODE	74-	.73		
1218 0.200 t->c		-	375 0.333		constant		POS		NUCA		sc
1227 0.286 c->t		-			constant			0.500			-
1245 0.200 a->c		-			Q, M, I, T, L, W					E, K, Q, T	L
1251 0.273 a->c	G, A	-			Q, M, I, T, L, W					constant	-
1323 0.333 t->g		-	459 0.250	t=>c	constant	-	153	0.111	a=>g	constant	-
1332 0.500 t=>a		-	600 0.333	t->c	constant	-	201	0.250	t->c	constant	-
1410 0.429 a->g		_	612 0.111			-				constant	-
1414 0.333 a->g	T, A, S, E, P	L	677 0.167			L				constant	-
NODE 68-67			684 0.300			-				constant	-
POS C NUCA	1				constant			0.286		constant	
33 0.500 t=>a		SC			A,Q,E,V,H,I					constant	-
40 1.000 a=>c	K.O	L			A, Q, E, V, H, I					constant	-
81 0.333 a->g		_	808 0.167			-	351	0.167	t=>c	constant	-
150 0.231 c=>t	A,P,S	-	845 0.500			L	387	0.333	t=>a	constant	-
207 0.600 t=>g	constant	-	897 0.667	a=>t	A, V	-	390	0.667	a=>g	constant	-
255 0.200 t=>c	Y,C	-	906 0.286	c->t	D, R	-		0.333			-
259 1.000 a=>c		L	996 0.400	a->g						L,S,I	L
261 0.167 c->t		-	1032 0.429		Companie	-				constant	_
339 0.500 t=>g 369 0.250 t=>c	constant	-	1080 0.333			-		0.333			_
387 0.333 c=>t	constant	-	1122 0.400							Q, M, I, T, L, W	L
393 0.231 c->g	R.P	_	1140 0.300			-				constant	-
397 0.333 c->t	L.S.I	-	12360.333			-	678	1.000	t=>c	Y,N,F	-
427 0.333 g=>t	A,S	-	1275 0.333			-	693	0.167	g->a	constant	-
450 0.214 t->a	constant	-								constant	-
459 0.250 t=>c	constant	-	NODE 75-	74				0.667			-
513 0.750 a->g	constant	-	POS C	NUCA	AA	sc	772	0.500	a=>c	R, K	-
543 0.333 t->a	constant	-	31 0.500		.,-,-,-		808	0.16/	t->t	constant H,Y,S,F	_
564 0.214 a->c 618 0.333 a->c	A, V	-	96 0.333							L, S	_
633 0.200 t=>c	constant	-	108 0.400							V, I, L, M	-
639 0.333 t=>c	constant	_	109 0.333							constant	-
708 0.200 g=>a	constant	_	159 0.167 195 0.750			_	1056	0.167	c->t	constant	-
717 0.200 c=>t	constant	-	228 0.125			_	1065	0.333	a=>g	constant	-
$/44 \ 0.250 \ a=>g$	constant	-	261 0.167							constant	-
/53 0.188 a->c	L,M,I	- 0	276 0.286							constant	
822 0.143 c->t	constant	500	315 0.167							constant	-
930 0.111 c=>t	constant	-	339 0.500				11/9	0.400	a->a	constant	-
969 0.429 a=>g 984 0.182 c->t	constant	-	444 0.167				1221	0.200	a=>q	L,S	-
1050 0.400 t=>c	constant	-	453 0.273 522 0.286			-	1254	0.429	a->g	constant	-
11220.400 t=>c	constant		618 0.333			_	1272	0.667	a=>g	L,S,V	-
11/60.250 g->a	E.D	-	739 0 667	2-20	TN					constant	-
11790.400 c=>t	constant	-	780 0.143	a->g	constant					P,A,L	
0.512 C->E	G. A	5 200	786 0.500	t->a	V, M, A	-	1398	0.250	a->g	R,K,I	
1287 0.200 a=>g	E,Q,K		789 0.429			-	MODE	73-	72		
1302 0.286 a=>g 1320 0.143 g=>a	constant		795 0.250					c 1		**	sc
1338 0.333 t=>c	Q, E, A		801 0.500			-	205	0 500	t->0	V,S,F,D,A	PNL
1374 1.000 t->g	Constant									constant	-
1303 U.500 a->c	V. I		914 0.143 927 0.231		The second secon					constant	-
1411 0.600 a->t	T.A.S.E.P		954 0.286			-	132	0.286	t=>c	constant	-
14131.000 a->q	T.A.S.E.P	-	976 0.250	a->g	constant	-	144	0.333	a=>g	constant	-
19220.429 g->a	T.V.I.K	-	1008 0.500	a->g	constant	-	148	0.333	c=>g	A,P,S	L
1425 0.429 a->g	L,V,C,I	-									

168	0.273	a=>g	constant	-
204	0.375	t=>c	constant	-
258	0.333	t=>a	G, D, E, N, H	L
291	0.333	t=>c	Y,F	-
306	0.375	a->g	A, V	-
313	0.250	t=>c	constant	-
315	0.167	g->a	constant	-
321	0.333	a->c	constant	-
402	0.500	t=>g	constant	-
465	0.333	c=>t	constant	-
471	0.500	t=>c	V, A	-
477	0.143	a=>g	constant	-
504	0.167	t=>c	constant	-
534	0.200	a=>g	constant	-
537	0.429	t=>a	constant	-
546	0.250	t=>c	constant	-
552	0.200	c=>t	constant	-
577	1.000	c=>t	constant	-
579	0.375	t=>a	constant	-
588	0.400	a=>g	constant	_
591	0.667	t=>c	constant	-
597	0.167	t=>c	constant	-
603	0.143		constant	-
612	0.111		constant	-
618			constant	-
663	0.500			-
696	0.286			_
702	0.200	The state of the s	constant	_
729	0.250		constant	-
732	0.125	a=>g	constant	-
744	0.250			_
753			L,M,I	L
765	0.429		C,F	-
785	0.200		V, M, A	L
804	0.250		constant	_
837	0.300		S, I, T	_
840			L,S	-
849			constant	_
852	0.286			-
870			constant	-
876	0.143	t=>c		-
914	0.143	g->a		L
945				_
969			constant	-
976	0.250			_
	0.333			L
				_
	30.200		The state of the s	_
	0.500			-
	0.250		S, F, A	_
	0.167			-
				-
	0.667		constant	-
	0.154		A,S,T,C	L
	0.125			L
	0.429		E, D	L
	0.333			-
	0.200			-
	0.143			-

APPENDIX II (pp. 562-567; corrections in proof, p. 566). Inferred amino acid changes on the internal branches of a string-based cladogram (one of 165 equally most-parsimonious), including summary statistics of the string search and the resultant matrix of apomorphic recognitions.

Similar to Appendix I, the following table and accompanying reference cladogram contain information about the functional impact of specific string changes (as reflected by alterations in amino acid identity). Interpretation is as in Appendix I with the following exceptions: (i) relative branch length (changes per given branch divided by total steps) is given, (ii) "CHAR" indicates the string character number from the matrix at the end of this appendix, (iii) "POS." still refers to nucleotide position, but, here, to the starting (3') position of a string recognition, (iv) "STR., SEQ." indicates first the number of simulated nucleotides (i.e., string length) followed by the string itself (divided to show the codon positions of its component nucleotides), and (v) "AA-seq." shows each alternative amino acid sequence identified by a particular string recognition. Under the latter category, internal stop codons are indicated by *1, *2, or *3 (for TAA, TAG, and TGA, respectively), and missing nucleotide data have sometimes necessitated the indication (by "?") of missing amino acids. Again, Dayhoff et al. (1978) PAM-250 logodds calculations were determined nondirectionally for each combination of amino acid sequences.


Summary statistics from the string search (involving 1000 randomly generated strings ranging in length from 6 to 21 base pairs) are provided below.

String	Total recognitions	Total apomorphies	Total similar- ities	Total single-tons	Total posi- tional recog- nitions	Mean recog- nitions per string
6	758	129	77	52	47	2.745
7	204	43	20	23	31	1.387
8	107	14	10	4	13	1.077
9	5	2	1	1	2	1.000
10	4	2	1	1	2	1.000
12	21	1	1	0	1	1.000
14	5	1	1	0	1	1.000
15	8	1	1	0	1	1.000
Σ	1112	193	112	81	98	

The 1000 strings evaluated contained the following proportions of "nucleotides," which verify their random generation:

 $\Sigma A = 3375$ $\Sigma C = 3309$ $\Sigma G = 3349$ $\Sigma T = 3297$

The matrix of 193 string recognitions (including 112 potentially informative similarities) is also presented. Headers are provided to give additional information for each character. The number of nucleotides per string character is given, followed by the number of recognitions (hits) per string, the start position of the string (in terms of rbcL nucleotides), and the character number (for reference to the table of changes). Immediately following the start position information may appear the designation "ab"; this indicates that separate string recognitions had the same start position, and so showed partial overlap (such partial correlation has been ignored in our present analyses; see text for further details). The matrix is presented in two blocks, corresponding to two rounds of string evaluation (500 strings in each, for a total of 1000). In each case, string recognitions occurring in the 3' primer region are shown in brackets, but were ignored during parsimony analysis.

NODE 77 - 76, relative branch	h length = 0.0138		NODE 42	- 41, relative branch	length :	= 0.0178		
NODE 77 - 76, relative branch CHARPOS. STR., SEQ. 032 313b 7, tta gat t 091 1254 6, t gct aa 100 1344 6, t gct aa 136 465 6, t caa gt 142 607 6, gat gaa 172 980 7, ac gct gg 173 1017 6, t caa gt NODE 76 - 75, relative branch CHARPOS. STR., SEQ.	c AA-seq.		SC CHARPOS.	STR., SEQ.	C	AA-seq.		SC
032 313b 7, tta gat t	0.500 LDL		- 044 543	6, t gct aa	0.143	SAK		T
100 1344 6 t get aa	0 300 AAK ACK ACK	AMY DMY	L 052 728	b, ct gca g	1 000	UIA USA		NL
136 465 6. t caa gt	0.200 AAK, ASK, ACK, A	ATK, KTK	- 077 1093	8. acc caa ga	0.250	TOD, POD		L
142 607 6. gat gaa	0.125 DE		- 100 1344	6. t get aa	0.200	AAK, ASK, ACK,	ATK, RTK	PNL
172 980 7, ac gct gg	0.100 HAG. HSG. HTG		I. 113 111	6. a gca gc	0.200	LAA		-
173 1017 6, t caa gt	0.500 ROV, RDV, REV, R	REI. ROI. RDL	L 136 465	6. t caa gt	0.250	IQV		-
			142 607	6, gat gaa	0.125	DE		-
NODE 76 - 75, relative branch	length = 0.0138		152 750	6, g atg aa	0.100	MMK, MLK, MIK		L
CHARPOS. STR., SEQ.	c AA-seq.		SC					
033 326 6, aa gaa g	0.125 EEG		- NODE 72	- 71, relative branch	length :	= 0.0079		ec
043 487 6, aac aaa	0.143 NK		- CHARPOS.	STR., SEQ.	0 167	AA-seq.	TUT CUU	DNI.
121 235 6 cgt tag	0.200 LAA		- 026 266	7 22 202 00	0.167	KRY EAL' EAA'	141, 544	-
137 728 6. ct gca g	0.167 TAG. TSG		T. 114 126	6. g act cc	0.500	MTP. VTP. LTP.	VSP	L
152 750 6, g atg aa	0.100 MMK, MLK, MIK		L 193 1394	6. tc aag t	0.500	IKF, IRF, IIF		PNL
183 1231 6, tgg gga	0.200 WG		-					
			NODE 71	- 70, relative branch	length =	= 0.0138		
NODE 75 - 74, relative branch	length = 0.0138		CHARPOS.	STR., SEQ.	C	AA-seq.		SC
CHARPOS. STR., SEQ.	c AA-seq.		SC 034 333	8, t tct gtt a	0.167	GSVT		-
035 345 6, c atg tt	0.200 NMF, NLF	mu nmu	L 044 543	6, t gct aa	0.143	SAK		Ţ
100 1344 b, t gct aa	0.200 AAK, ASK, ACK, A	TK, KTK	NT 002 128	6, ct gca g	0.111	NDU		-
150 724 6 get act	0.250 GAA, GWA		- 142 607	6 gat gaa	0.125	DE		-
158 830 8, at act agt	0.167 NTS, NMI, NTT		PNL 152 750	6. g atg aa	0.100	MMK, MLK, MIK		L
166 1259 7, at cga gt	0.143 NRV, N*3V		-					
			NODE 70	- 43, relative branch	length =	= 0.0099		
NODE 74 - 73, relative branch	length = 0.0079		CHARPOS.	STR., SEQ.	C	AA-seq.		SC
CHARPOS. STR., SEQ.	a AA-seq.		SC 006 88	STR., SEQ. 6, aag acc	0.500	ET , EP, KV, DT	, QT, TP	PNL
NODE 74 - 73, relative branch CHARPOS. STR., SEQ. 018 152 6, as gas g	1ength = 0.0079 c AA-seq. 0.143 EEA		SC 006 88 - 007 90	STR., SEQ. 6, aag acc 6, g acc aa	0.500 0.200	ET , EP, KV, DT ETK, EPK, KVS,	KTK, DTK, QTK	PNL (, ETL,
NODE 74 - 73, relative branch CHARPOS. STR., SEQ. 018 152 6, aa gaa g 031 313 6, tta gat	1ength = 0.0079 c AA-seq. 0.143 EEA 0.500 LD		CHARPOS. SC 006 88 - 007 90 -	STR., SEQ. 6, aag acc 6, g acc aa	0.500	ET , EP, KV, DT ETK, EPK, KVS, TPK, PNL	KTK, DTK, QTK	PNL (, ETL,
NODE 74 - 73, relative branch CHARPOS. STR.,SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt	length = 0.0079 c AA-seq. 0.143 EEA 0.500 LD 0.143 NK		SC 006 88 - 007 90 - 114 126	STR., SEQ. 6, aag acc 6, g acc aa 6, g act cc	0.500 0.200	ET , EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPI.	VSP	PNL (, ETL,
NODE 74 - 73, relative branch CHARPOS. STR., SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt	length = 0.0079 a AA-seq. 0.143 EEA 0.500 LD 0.143 NK 0.167 NRV		SC 006 88 - 007 90 - 114 126 - 138 500 158 830	STR., SEQ. 6, aag acc 6, g acc aa 6, g act cc 7, gt cct tt 8, at act act	0.500 0.200 0.500 0.250 0.167	ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS. NMI. NTT	Y, QT, TP KTK, DTK, QTK VSP	PNL L PNL
NODE 74 - 73, relative branch CHARPOS. STR., SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch	length = 0.0079		SC 006 88 - 007 90 - 114 126 - 138 500 158 830	STR.,SEQ. 6, aag acc 6, g acc aa 6, g act cc 7, gt cct tt 8, at act agt	0.500 0.200 0.500 0.250 0.167	AA-seq. ET , EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT	C, QT, TP KTK, DTK, QTK VSP	PNL L PNL
NODE 74 - 73, relative branch CHARPOS. STR., SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR., SEQ.	length = 0.0079		CHARPOS. SC 006 88 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70	STR.,SEQ. 6, aag acc 6, g acc aa 6, g act cc 7, gt cct tt 8, at act agt - 69, relative branch	0.500 0.200 0.500 0.250 0.167	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT = 0.0039	C, QT, TP KTK, DTK, QTK VSP	PNL ETL, L PNL
NODE 74 - 73, relative branch CHARPOS. STR., SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR., SEQ. 034 333 8, ttet gtt a	length = 0.0079		CHARPOS. C 006 88 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70 - CHARPOS.	STR.,SEQ. 6, aag acc 6, g acc aa 6, g act cc 7, gt cct tt 8, at act agt - 69, relative branch STR.,SEQ.	0.500 0.200 0.500 0.250 0.167	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT 0.0039 AA-seq.	T, QT, TP KTK, DTK, QTK VSP	PNL L PNL SC
NODE 74 - 73, relative branch CHARPOS. STR., SEQ. 018 152 6, aa gaa g 031 313 6, taa gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR., SEQ. 034 333 8, t tct gtt a 085 1147 6, cat gtt	length = 0.0079		CHARPOS. SC 006 8 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70 - CHARPOS 033 326	STR.,SEQ. 6, aag acc 6, g acc aa 6, g act cc 7, gt cct tt 8, at act agt - 69, relative branch STR.,SEQ. 6, aa gaa g	0.500 0.200 0.500 0.250 0.167 length =	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT = 0.0039 AA-seq. EEG	r, QT, TP KTK, DTK, QTK VSP	PNL L PNL SC
NODE 74 - 73, relative branch CHARPOS. STR.,SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR.,SEQ. 034 333 8, t tct gtt a 085 1147 6, cat gtt	length = 0.0079		CHARPOS. SC 006 88 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70 - CHARPOS 033 326 - 183 1231	STR.,SEQ. 6, ag acc 6, g acc ca 6, g act cc 7, gt cct tt 8, at act agt - 69, relative branch STR.,SEQ. 6, ag ag a g 6, tgg gga	0.500 0.200 0.500 0.250 0.167 length = 0.125 0.200	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT 0.0039 AA-seq. EEG WG	r, QT, TP KTK, DTK, QTK VSP	PNL L PNL SC
NODE 74 - 73, relative branch CHARPOS. STR., SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR., SEQ. 034 333 8, t tct gtt a 085 1147 6, cat gtt 138 500 7, gt cct tt 183 1231 6, tgg gga	length = 0.0079		CHARPOS. SC 006 88 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70 - CHARPOS 033 326 - 183 1231	STR.,SEQ. 6, aag acc 6, g acc ca 6, g act cc 7, gt cct tt 8, at act agt - 69, relative branch STR.,SEQ. 6, aa gaa g 6, tgg gga	0.500 0.200 0.500 0.250 0.167 length = 0.125 0.200	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT 0.0039 AA-seq. EEG WG	r, QT, TP KTK, DTK, QTK VSP	PNL L PNL SC -
NODE 74 - 73, relative branch CHARPOS. STR., SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR., SEQ. 034 333 8, t tct gtt a 085 1147 6, cat gtt 138 500 7, gt cct tt 138 1231 6, tgg gga	length = 0.0079 AA-seq. 0.143 EEA 0.500 LD 0.143 NK 0.167 NRV length = 0.0079 C AA-seq. 0.167 GSVT 0.143 HV 0.250 RPL 0.200 WG		CHARPOS. SC 006 88 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70 - CHARPOS 033 326 - 183 1231 - NODE 99 - CHARPOS.	STR.,SEQ. 6, aag acc 6, g acc ca 6, g acc tcc 7, gt cct tt 8, at act agt - 69, relative branch STR.,SEQ. 6, aa gaa g 6, tgg gga - 66, relative branch	0.500 0.200 0.500 0.250 0.167 length = 0.125 0.200	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT 0.0039 AA-seq. EEG WG 0.0138	r, QT, TP KTK, DTK, QTK VSP	PNL C, ETL, L PNL SC
NODE 74 - 73, relative branch CHARPOS. STR., SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR., SEQ. 034 333 8, t tct gtt a 085 1147 6, cat gt 138 500 7, gt cct tt 183 1231 6, tgg gga NODE 72 - 42, relative branch CHARPOS. STR., SEQ.	length = 0.0079		CHARPOS. SC 006 88 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70 - CHARPOS 033 3231 - NODE 69 CHARPOS. SC 013 141	STR., SEQ. 6, ag acc 6, g acc cc 7, gt cct tt 8, at act agt - 69, relative branch STR., SEQ. 6, ag ag g - 66, relative branch STR., SEQ. 6. a gtt cc	0.500 0.200 0.500 0.250 0.167 length =	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT 0.0039 AA-seq. EEG WG 0.0138 AA-seq. GUP	r, QT, TP KTK, DTK, QTK VSP	SC PNL L PNL SC SC
NODE 74 - 73, relative branch CHARPOS. STR.,SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR.,SEQ. 034 333 8, t tct gtt a 085 1147 6, cat gtt 138 500 7, gt cct tt 183 1231 6, tgg gga NODE 72 - 42, relative branch CHARPOS. STR.,SEQ. 033 326 6, aa gaa g	length = 0.0079		CHARPOS. SC 006 88 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70 - CHARPOS 033 326 - 183 1231 - NODE 69 CHARPOS. SC 013 141 - 036 388	STR.,SEQ. 6, aag acc 6, g act cc 7, gt cct tt 8, at act agt - 69, relative branch STR.,SEQ. 6, aa gaa g 6, tgg gga - 66, relative branch STR.,SEQ. 6, a gtt cc 6, cta cga	0.500 0.200 0.500 0.250 0.167 length = 0.125 0.200 length = 0.333 0.200	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT 0.0039 AA-seq. EEG WG 0.0138 AA-seq. GVP LR, LP	r, QT, TP KTK, DTK, QTK VSP	SC PNL L PNL SC
NODE 74 - 73, relative branch CHARPOS. STR., SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR., SEQ. 034 333 8, t tct gtt a 085 1147 6, cat gtt 138 500 7, gt cct tt 138 1231 6, tgg gga NODE 72 - 42, relative branch CHARPOS. STR., SEQ. 033 326 6, aa gaa g 115 155 7, aa gaa g	length = 0.0079		CHARPOS. SC 006 88 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70 - CHARPOS 033 326 - 183 1231 - NODE 69 CHARPOS. SC 013 141 - 036 388 - 043 487	STR., SEQ. 6, ag acc 6, g acc cc 7, gt cct tt 8, at act agt - 69, relative branch STR., SEQ. 6, ag ag a 6, tgg gga - 66, relative branch STR., SEQ. 6, ag tc cc 6, ct acga 6, ag tc cc 6, cta cga 6, aa caaa	0.500 0.200 0.500 0.250 0.167 length = 0.125 0.200 length = 0.333 0.200 0.143	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT 0.0039 AA-seq. EEG WG 0.0138 AA-seq. GVP LR, LP NK	r, QT, TP KTK, DTK, QTK VSP	SC PNL L PNL SC SC - L -
NODE 74 - 73, relative branch CHARPOS. STR.,SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR.,SEQ. 034 333 8, t tct gtt a 085 1147 6, cat gtt 138 500 7, gt cct tt 183 1231 6, tgg gga NODE 72 - 42, relative branch CHARPOS. STR.,SEQ. 033 326 6, aa gaa g 115 155 7, aa gca gg 137 728 6, ct gca g	length = 0.0079		CHARPOS. C 006 88 C 007 90 C 114 126 C 138 500 C 830 C NODE 70 C CHARPOS. C 013 123 C NODE 69 CHARPOS. C 013 141 C 036 388 C 043 487 L 056 783	STR., SEQ. 6, ag acc aa 6, g act cc 7, gt cct tt 8, at act agt - 69, relative branch STR., SEQ. 6, ag aga g - 66, relative branch STR., SEQ. 6, a gtt cc 6, cta cga 6, ac aca 6, a gtt cc	0.500 0.200 0.500 0.250 0.167 length = 0.125 0.200 length = 0.333 0.200 0.143 0.250	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT = 0.0039 AA-seq. EEG WG = 0.0138 AA-seq. GVP LR, LP NK GVP, GMP, GAP GVP, GAP	r, QT, TP KTK, DTK, QTK VSP	SC PNL L PNL SC - PNL SC - PNL
NODE 74 - 73, relative branch CHARPOS. STR.,SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR.,SEQ. 034 333 8, t tct gtt a 085 1147 6, cat gtt 138 500 7, gt cct tt 183 1231 6, tgg gga NODE 72 - 42, relative branch CHARPOS. STR.,SEQ. 033 326 6, aa gaa g 115 155 7, aa gca gg 137 728 6, ct gca g 187 1284 6, a cag gc	length = 0.0079		CHARPOS. SC 006 88 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70 - CHARPOS 033 326 - 183 1231 - NODE 69 CHARPOS. SC 013 141 - 036 388 - 043 487 L 056 783 L 124 273	STR.,SEQ. 6, aag acc 6, g act cc 7, gt cct tt 8, at act agt - 69, relative branch STR.,SEQ. 6, aa gaa g 6, tgg gga - 66, relative branch STR.,SEQ. 6, a gtt cc 6, cta cga 6, aac aaa 6, a gtt cc 6, t gg gg	0.500 0.200 0.500 0.250 0.167 length = c 0.125 0.200 length = c 0.333 0.200 0.143 0.250 0.167	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT 0.0039 AA-seq. EEG WG 0.0138 AA-seq. GVP NK GVP, GMP, GAP AGE, PGE, VGE,	T, QT, TP KTK, DTK, QTK VSP	SC PNL SC - PNL SC - PNL PNL PNL
NODE 74 - 73, relative branch CHARPOS. STR., SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR., SEQ. 034 333 8, t tct gtt a 085 1147 6, cat gtt 138 500 7, gt cct tt 138 1231 6, tgg gga NODE 72 - 42, relative branch CHARPOS. STR., SEQ. 033 326 6, aa gaa g 115 155 7, aa gca gg 137 728 6, ct gca g 187 1284 6, a cag gc	length = 0.0079		CHARPOS. SC 006 88 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70 - CHARPOS 033 326 - 183 1231 - NODE 69 CHARPOS. SC 013 141 - 036 388 - 043 487 L 056 783 L 124 273 177 1182	STR., SEQ. 6, ag acc 6, g acc cc 7, gt cct tt 8, at act agt - 69, relative branch STR., SEQ. 6, aa gaa g 6, tgg gga - 66, relative branch STR., SEQ. 6, a gtt cc 6, cta cga 6, ag tt cc 6, agtt cc 6, tggg ga 6, tggg ga 6, t ggg ga 6, t ggg ga 6, t ggg ga 6, t ggg ga	0.500 0.200 0.500 0.250 0.167 length : c 0.125 0.200 length : c 0.333 0.200 0.143 0.200 0.143 0.250 0.143	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT 0.0039 AA-seq. EEG WG 0.0138 AA-seq. GVP LR, LP NK GVP, GMP, GAP AGE, PGE, VGE, FGD	TGE	SC PNL SC SC C C C C C C C C C C C C C C C C C
NODE 74 - 73, relative branch CHARPOS. STR.,SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR.,SEQ. 034 333 8, t tct gtt a 085 1147 6, cat gtt 138 500 7, gt cct tt 183 1231 6, tgg gga NODE 72 - 42, relative branch CHARPOS. STR.,SEQ. 033 326 6, aa gaa g 115 155 7, aa gca gg 137 728 6, ct gca g 187 1284 6, a cag gc	length = 0.0079		CHARPOS. SC 006 88 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70 - CHARPOS 033 326 - 183 1231 - NODE 69 CHARPOS. SC 013 1431 - 036 388 - 043 487 L 056 783 L 124 273 1 174 1182 193 1394	STR., SEQ. 6, aag acc 6, g act cc 7, gt cct tt 8, at act agt - 69, relative branch STR., SEQ. 6, aa gaa g 6, tgg gga - 66, relative branch STR., SEQ. 6, a gtt cc 6, cta cga 6, aac aaa 6, a gtt cc 6, t ggg ga 6, t ggg ga 6, t ggg ga 6, t ggg ga 6, t caag t	0.500 0.200 0.500 0.250 0.167 length = c 0.125 0.200 0.143 0.250 0.150 0.001 0.150 0.001 0.00	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT = 0.0039 AA-seq. EEG WG = 0.0138 AA-seq. GVP LR, LP NK GVP, GMP, GAP ACE, PGE, VGE, FGD IKF, IRF, IIF	TGE	SC PNL SC - PNL SC - PNL PNL PNL PNL PNL PNL
NODE 74 - 73, relative branch CHARPOS. STR.,SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR.,SEQ. 034 333 8, t tct gtt a 085 1147 6, cat gtt 138 500 7, gt cct tt 138 1231 6, tgg gga NODE 72 - 42, relative branch CHARPOS. STR.,SEQ. 033 326 6, aa gaa g 115 155 7, aa gac gg 137 728 6, ct gca g 187 1284 6, a cag gc	length = 0.0079		CHARPOS. SC 006 88 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70 - CHARPOS 033 326 - 183 1231 - NODE 69 CHARPOS. SC 013 141 - 036 388 - 043 487 L 056 738 1 124 273 177 1182 193 1394	STR., SEQ. 6, ag acc 6, g acc ca 6, g acc cc 7, gt cct tt 8, at act agt - 69, relative branch STR., SEQ. 6, ag aga g 6, tgg gga - 66, relative branch STR., SEQ. 6, a gtt cc 6, cta cga 6, agtt cc 6, tt gg ga 6, tt ggg ga 6, tt ggg ga 6, tt ggg ga 6, t caag t 7- 65, relative branch	0.500 0.200 0.500 0.250 0.167 length = 0.200 0.125 0.200 0.143 0.200 0.143 0.250 0.167	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT 0.0039 AA-seq. EEG WG 0.0138 AA-seq. GVP LR, LP NK GVP, GMP, GAP AGE, PGE, VGE, FGD IKF, IRF, IIF	T, QT, TP KTK, DTK, QTK VSP	SC PNL SC SC SC PNL PNL PNL SC PNL PNL PNL PNL PNL PNL
NODE 74 - 73, relative branch CHARPOS. STR., SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR., SEQ. 034 333 8, t tct gtt a 085 1147 6, cat gtt 138 500 7, gt cct tt 138 1231 6, tgg gga NODE 72 - 42, relative branch CHARPOS. STR., SEQ. 033 326 6, aa gaa g 115 155 7, aa gca gg 137 728 6, ct gca g 187 1284 6, a cag gc	length = 0.0079		CHARPOS. SC 006 88 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70 - CHARPOS 033 326 - 183 1231 - NODE 69 CHARPOS. SC 013 141 - 036 388 - 043 487 L 056 783 L 124 273 177 1182 193 1394 NODE 66 CHARPOS.	STR., SEQ. 6, ag acc ac 6, g acc cc 7, gt cct tt 8, at act agt - 69, relative branch STR., SEQ. 6, aa gaa g 6, tgg gga - 66, relative branch STR., SEQ. 6, a gtt cc 6, cta cga 6, acc aca 6, a gtt cc 6, t tggg ga 6, t t ggg ga 6, t c aag t - 65, relative branch STR., SEQ.	0.500 0.200 0.500 0.167 length = c 0.125 0.200 length = c 0.333 0.200 0.143 0.250 0.163 0.303 0.250 0.163 0.303 0.250 0.163 0.303 0.250 0.164	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT 0.0039 AA-seq. EEG WG 0.0138 AA-seq. GUP LR, LP NK GUP, GMP, GAP AGE, PGE, VGE, FGD IKF, IRF, IIF 0.0079 AA-seq.	TGE	SC PNL L PNL SC PNL PNL PNL PNL PNL PNL PNL SC
NODE 74 - 73, relative branch CHARPOS STR.,SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR.,SEQ. 034 333 8, t tct gtt a 085 1147 6, cat gtt 138 500 7, gt cct tt 183 1231 6, tgg gga NODE 72 - 42, relative branch CHARPOS. STR.,SEQ. 033 326 6, aa gaa g 115 155 7, aa gca gg 137 728 6, ct gca g 187 1284 6, a cag gc	length = 0.0079		CHARPOS. SC 006 88 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70 - CHARPOS 033 326 - 183 1231 - NODE 69 CHARPOS. SC 013 1431 - 036 488 - 043 487 L 056 783 L 124 273 177 173 177 173 177 173 177 189 193 1394 NODE 66 CHARPOS.	STR., SEQ. 6, aag acc 6, g act cc 7, gt cct tt 8, at act agt - 69, relative branch STR., SEQ. 6, aa gaa g 6, tgg gga - 66, relative branch STR., SEQ. 6, a gtt cc 6, cta cga 6, aac aaa 6, a gtt cc 6, tggg ga 6, tc ggg ga 6, tc aagt - 65, relative branch STR., SEQ. 12, a gta act cct ca	0.500 0.200 0.500 0.250 0.167 0.200 0.125 0.200 0.143 0.250 0.167 0.333 0.500 0.167	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT = 0.0039 AA-seq. EEG WG = 0.0138 AA-seq. GVP LR, LP NK GVP, GMP, GAP ACE, PGE, VGE, FGD IKF, IRF, IIF = 0.0079 AA-seq. RWTPO, RMTPO, F	T, QT, TP KTK, DTK, QTK VSP TGE	SC PNL SC PNL SC PNL PNL SC PNL PNL PNL SC PNL PNL PNL SC PNL
172 980 7, ac gct gg 173 1017 6, t caa gt NODE 76 - 75, relative branch CEARPOS. STR., SEQ. 033 326 6, aa gaa g 043 487 6, aac aaa 113 111 6, a gca gc 121 235 6, cgt tac 137 728 6, ct gca g 152 750 6, g atg aa 183 1231 6, tgg gga NODE 75 - 74, relative branch CEARPOS. STR., SEQ. 035 345 6, c atg tt 100 1344 6, t gct aa 116 162 6, a gca gc 150 724 6, gct act 158 830 8, at act agt 166 1259 7, at cga gt NODE 74 - 73, relative branch CHARPOS. STR., SEQ. 018 152 6, aa gaa g 031 313 6, ta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR., SEQ. 034 333 8, t tct ggt 138 500 7, gt cct tt 138 500 7, gt cct tt 138 1521 6, tgg gga NODE 72 - 42, relative branch CHARPOS. STR., SEQ. 033 326 6, aa gaa g 15 155 7, aa gca gg 187 1284 6, a cag gc	length = 0.0079		CHARPOS. SC 006 88 - 007 90 - 114 126 - 138 500 158 830 SC NODE 70 - CHARPOS 033 326 - 183 1231 - NODE 69 CHARPOS. SC 013 141 - 036 388 - 043 487 L 056 783 L 124 273 177 1182 193 1394 NODE 66 CHARPOS. 010 122 076 1066	STR.,SEQ. 6, ag acc ac 6, g acc cc 7, gt cct tt 8, at act agt - 69, relative branch STR.,SEQ. 6, ag aga g 6, tgg gga - 66, relative branch STR.,SEQ. 6, a gtt cc 6, cta cga 6, a gtt cc 6, tt gg ga 6, tt gg ga 6, tt gg ga 6, t c agg 6, t ggg ga 7, t gg ga 8, tc agg 9, t gg ga 9, tc agg 10, tc agg 11, tc agg 12, ag ta act cct ca 12, ag ta act cct ca 12, ag aga c 12, ag aga c 12, ag ac cct ca 16, ag aga c 16, tct cc	0.500 0.500 0.200 0.500 0.167 length = c 0.125 0.200 length = c 0.333 0.200 0.143 0.250 0.143 0.350 0.145 0.333 0.200 0.145 0.333 0.200 0.145 0.333 0.200 0.145 0.125 0.333 0.200 0.145 0.125 0.333 0.200 0.145 0.125 0.333 0.200 0.145	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT 0.0039 AA-seq. EEG WG 0.0138 AA-seq. GVP LR, LP NK GVP, GMP, GAP ACE, PGE, VGE, FGG) LKF, IRF, IIF 0.0079 AA-seq. RVTPO, RMTPO, F KFR, EDR RVTPO, RMTPO, F KFR, EDR RUTPO, RMTPO, F KFR, EDR	TGE	SC PNL SC S
NODE 74 - 73, relative branch CHARPOS. STR., SEQ. 018 152 6, aa gaa g 031 313 6, tta gat 043 487 6, aac aaa 092 1259 7, at cga gt NODE 73 - 72, relative branch CHARPOS. STR., SEQ. 034 333 8, t tct gtt a 085 1147 6, cat gtt 138 500 7, gt cct tt 138 1231 6, tgg gg NODE 72 - 42, relative branch CHARPOS. STR., SEQ. 033 326 6, aa gaa g 115 155 7, aa gac gg 137 728 6, ct gca g 187 1284 6, a cag gc	length = 0.0079		CHARPOS. CO 006 88 - 007 90 - 114 126 - 138 500 - 158 830 SC NODE 70 - CHARPOS 033 326 - 183 1231 - NODE 69 CHARPOS. SC 013 141 - 036 388 - 043 487 L 056 783 L 124 273 177 1182 193 1394 NODE 66 CHARPOS. 010 122 076 1067 132 393 150 72	STR., SEQ. 6, ag acc cc 7, gt cct tt 8, at act agt - 69, relative branch STR., SEQ. 6, aa gaa g 6, tgg gga - 66, relative branch STR., SEQ. 6, aa gtt cc 6, cta cga 6, agt cc 6, tggg ga 6, tt ggg ga 6, tc aag 7, tagg ga 7, tagg ga 8, tggg ga 9, tc aag 12, a gta act cct ca 9, ag ta acc cct ca 9, ag tag acc cct ca cct ca cc, acc cct ca cc	0.500 0.500 0.200 0.500 0.167 length = c 0.125 0.200 length = c 0.333 0.200 0.143 0.250 0.167 0.333 0.250 0.167 0.367	AA-seq. ET, EP, KV, DT ETK, EPK, KVS, TPK, PNL MTP, VTP, LTP, RPL NTS, NMI, NTT 0.0039 AA-seq. EEG WG 0.0138 AA-seq. GVP LR, LP NK GVP, GMP, GAP AGE, PGE, VGE, FGD IKF, IRF, IIF 0.0079 AA-seq. RVTPQ, RMTPQ, F RFR, EDR ALR, ASR, T?? AT	TGE	SC PNL SC SC SC PNL PNL SC S

CHAI 085	RPOS.	- 51, relative STRSEQ. 6, cat gta 7, at cga gt - 50, relative STRSEQ. 6, t ggg ga 6, ct cta c 6, gat gaa 6, ct cta c 6, gat gaa 7, at cga gt - 49, relative STRSEQ. 6, a gtt cc 6, cat gt t 6, t c gg t 6, t cag gc 7, aa aga gc 15, c t ga gag g - 48, relative STRSEQ. 6, t gca g 6, cat gtt 7, aa aga gc 6, ct gca g 7, at cga	branch le	ength =	AA-se	59 eq.			5	CHI	ODE 4	17 - . s	46, relative TR., SEQ.	branch	length c	= 0.03	158 eq.			sc
152	750	6, g atg aa		0.100	MMK,	MLK,	MIK			L 024	22	7 6	4, a gat tac, gt ctc g	aga tta	0.200KI 0.250	SLD,	RDYRL, NLD	KDY	KL, KDYTI,	KEYKL PNL
166	1259	7, at cga gt		0.143	NRV,	N*V				- 035	345	5 6,	, c atg tt		0.200	NMF,	NLF			L
MAD		FO								043	48	7 6,	, aac aaa		0.143	NK				-
CHAD	BOG ST	- 50, relative	branch lei	ngth =	0.005	9				049	655	5 6,	, tgc ttc		1.000	CF,	LF, V	?		NL
124	222	SIR., SEQ.	,	0 167	AA-se	q.	HOD	mon	S	C 076	106	7 6,	, aa gac c		0.200	KFR,	EDR			NL
130	386	6, c ggg ga		0.167	AGE,	PGE,	VGE,	TGE	PN	L 092	1259	9 1,	, at cga gt		0.167	NRV				-
142	607	6. gat gaa		1 125	DP	ALL				L 152	150	0 6,	, g atg aa		0.100	MMK,	MLK,	MIK		L
	00,	o, gat gaa		3.123	DE					NO	DP 46		45 valatima	hrench	length .	- 0 00	E0.			
NODE	50	- 49. relative	branch len	noth =	0.011	8				CHA	RPOS	27	TR SEC	Dranch	rength .	AA-84	23			90
CHAR	POS.	STR., SEQ.		C	AA-sec	7.			SI	012	140	0 7	an ata co		0 333	GVP	d.			50
013	141	6, a gtt cc	0	333	GVP				Transler Lines	132	395	5 6.	ct cta c		0.143	AT.R	ASR.	TOO		NT.
035	345	6, c atg tt	0	200	NMF. 1	NLF				182	1207b	6.	aac aaa		0.500	GG	noit,			
047	635	6, tg cgt t	0	3333	MRW							,	33- 333		0.000	-				
051	684	6, t cag gc	0	250	AQA, S	SQA,	AQT,	SQG		L NO	DE 65	5 -	64. relative	branch	length :	= 0.00	79			
053	755	7, aa aga gc	0	200	KRA					- CHA	RPOS.	. ST	TR., SEQ.		C	AA-se	Per			SC
143	639	15, c tgg aga g	at cgt tt0	.500	RWRDRE	7			THE RESERVE OF THE PARTY OF	- 052	728	8 6,	ct gca g		0.111	TAG.	TSG			L
										142	607	7 6,	gat gaa		0.125	DE				-
NODI	49	- 48, relative	branch len	ngth =	0.015	8				168	950	0 6,	cg tta c		0.250	ALR,	ASC			NL
CHAR	POS.	STR., SEQ.		C	AA-sec	4.			S	172	980	0 7,	ac gct gg		0.100	HAG,	HSG,	HTG		L
050	663	6, t gca ga	0	.500	CAE, I	VAE,	CAE		N.	L										
032	128	6, ct gca g	0	0.111	TAG,	ISG				L NO	DE 64	4 -	55, relative	branch	length :	= 0.00	59			
115	114/	6, cat gtt	0	0.143	HV					- CHA	RPOS.	. SI	TR., SEQ.		c	AA-se	eq.			sc
110	100	f, aa gca gg	0	0.167	EAG					- 061	856	6 6,	gac aac		0.200	DN				-
130	396	6, acc act	0	1.200	TT					- 106	1418	8 6,	at acc t		0.500	DTL,	DAT'	DTV,	ILC, DKL	NL
137	728	6 ct gca g		1 167	ALK,	ALP				L 191	1355	5 8,	gc cct gaa		0.500	SPE,	SPD,	SAE,	SLE	L
166	1259	7. at cga gt		143	MDU I	156				L										
	200	i, ac cya yc		0.143	MKA,	N-V				- NO	DE 55	-	54, relative	branch	length	= 0.00	39			
NOD	E 48	- 44. relative	branch len	noth =	0.013	R				054	766	6 7	FR., SEQ. at acc t gc cct gaa 54, relative FR., SEQ. ttt gcc a g atg aa		0 250	AA-B	eq.	~~~		SC
CHAR	POS.	STR., SEQ.		C	AA-80	α.			e.	152	750	0 6	a sta ss		0.250	PAR,	CAR,	CAK		NL
031	313	6, tta gat	(0.500	LD	4.				- 152	,50	0 0,	, y acy aa		0.100	LILIL'	MLK,	MIK		SC -
038	412	6, cta cga	(0.333	LR, S	R			N	I. NO	DR 54	4 -	52. relative	branch	length :	- 0 00	20			
116	162	6, a gca gc	(0.250	GAA,	GWA			N	L CHA	RPOS.	. 57	TR. SEO.	Diamon	C	AA-8	776			ec
138	500	7, gt cct tt	(0.250	RPL				Mark Sales S	- 021	198	8 6.	g aca ac		0.250	WTT	-d.			-
142	607	6, gat gaa	(0.125	DE					-		,	,							
172	980	7, ac gct gg	(0.100	HAG,	HSG,	HTG			L NO	DE 54	4 -	53, relative	branch	length	= 0.00	159			
MAD		47								CHA	RPOS.	. 57	TR., SEQ.		c	AA-s	eq.			SC
CHAD	B 48	- 4/, relative	branch le	ngth =	0.007	9				073	1135	5 6,	, tca ggc		0.500	SG				-
017	164	SIR., SEQ.		0 167	AA-se	q.			S	C 079	1110	0 7,	, t ttg cca		1.000	SLP,	STP,	SLA,	SMP	NL
053	755	7 as aga g		0.167	AAV,	WAV			N	L 176	1138	8 6,	, ggc ggt		0.500	GG				-
054	766	7. ttt gcc a		0.200	RRA	CAD	CNV		-	-										
124	273	6. t ggg ga		0.250	ACE,	DCE,	UCE	mon	PN	L NC	DE 64	4 -	63, relative	branch	length	= 0.00	120			
		., . 333 30		0.101	MOE,	FGE,	VGE,	IGE	20	L CH	RPOS	0 7	TR., SEQ.		0 167	AA-8	eq.			SC
										192	136	9 1	, get get t		0.167	AAC				-
		7, gt cct tt 6, gat gaa 7, ac gct gg - 47, relative STR.,SEQ. 6, ct gca g 7, aa aga gc 7, ttt gcc a 6, t ggg ga								M	DE ST	3 -	62, relative	branch	length	= 0 00	170			
										CHI	RPOS	. 5	TR. SEO.	Dranch	renden	AA	907			-
										003	7	4 9	. at acg cct	a	0.200	YTPE	. FTP	D. YT	PO VTPD	SC
										054	76	6 7	, ttt gcc a		0.250	FAR.	CAR.	CAK	Z, IIID	NI
										09:	125	9 7	, at cga gt		0.167	NRV	,			IVE
										124	27.	3 6	TR., SEQ. , at acg cct , ttt gcc a , at cga gt , t ggg ga		0.167	AGE,	PGE,	VGE,	TGE	PNL

CHARPOS 098 1338	- 61, relative branch STR.,SEQ. 6, t gag gc 6, ct cta c	c AA-seq. 0.333 REA, EEA			SC NL NL	CHARPOS. 139 501	- 58, relative branch STR., SEQ. 6, c ccc ct 9, ag gct gaa a	1.000	AA-seq. RPL	sc - L
NODE 61	- 56, relative branch STR., SEQ. 8, ca cct gag	length = 0.0039				NODE 69	- 68, relative branch	length =	0.0079	
CHARPOS.	STR., SEQ.	c AA-seq.			SC	CHARPOS.	STR., SEQ.	C	PVP, PLP, PVV, TVT, SVV, PV	SC
015 146	8, ca cct gag	0.100 PPE, PAE,	PSE		PNL	027 267	6, t gtt cc	0.250	PVP, PLP, PVV, TVT, SVV, PVA	PNL
145 684	6, a cag gc	0.333 AQA, SQA,	SQG, AQ		L	029 543	6, t gct aa	1.000	SAK	
						137 728	6, t gct aa 6, ct gca g	0.167	TAG, TSG	L
NODE 60	- 57, relative branch	length = 0.0039				166 1259	7, at cga gt	0.143	NRV, N*V	-
CHARPOS.	STR., SEQ.	c AA-seq.			SC					
018 152	6, aa gaa g	0.143 EEA			-		- 67, relative branch			
090 1245	7, g ggt gcc	0.500 PGA, PGG,	PVA, PGF	, PRA	NL	CHARPOS.	STR., SEQ.	C	AA-seq.	SC
									CYD, CYG, CYE, CYN, CYH	PNL
NODE 60	- 59, relative branch	length = 0.0099					8, t tct gtt a			-
CHARPOS.	STR., SEQ.	c AA-seq.			SC	047 635	6, tg cgt t	0.333	MRW	-
076 1067	6, aa gac c	0.200 KFR, EDR			NL	076 1067	6, aa gac c	0.200	KFR, EDR	NL
100 1344	6, t GCT aa	0.200 AAK, ASK,	ACK, ATH	, RTK	PNL	092 1259	7, at cga gt	0.167	NRV	-
137 728	6, ct gca g	0.167 TAG, TSG			L	116 162	6, a gca gc	0.250	GAA, GWA	NL
152 750	6, ct gca g 6, g atg aa	0.100 MMK, MLK,	MIK		L	130 386	6, ct cta c 6, gct act	0.167	ALR, ALP	L
	6, t ggg ga	0.333 FGD			-	150 724	6, gct act	0.125	AT	-
						170 966	6, t ggg ga	0.333	GGD	-
							7, gct gct t	0.167	AAC	C

Corrections in proof: P. 564, under "NODE 70-43," fourth line from bottom, delete comma after "TPK" and move "PNL" to right hand column; p. 566, under "NODE 68-67," bottom line, right hand column, should read "-_."

Albert, Victor A et al. 1994. "Functional Constraints and rbcL Evidence for Land Plant Phylogeny." *Annals of the Missouri Botanical Garden* 81, 534–567. https://doi.org/10.2307/2399902.

View This Item Online: https://www.biodiversitylibrary.org/item/89405

DOI: https://doi.org/10.2307/2399902

Permalink: https://www.biodiversitylibrary.org/partpdf/30317

Holding Institution

Missouri Botanical Garden, Peter H. Raven Library

Sponsored by

Missouri Botanical Garden

Copyright & Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder.

License: http://creativecommons.org/licenses/by-nc-sa/3.0/

Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the **Biodiversity Heritage Library**, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.