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We investigated the frequency and causative taxa of observed microalgal blooms in New South Wales
(NSW) coastal waters from 2000 to 2009 and compared these to an earlier bloom inventory from 1990 to
1999. The majority of recurrent blooms are harmless water discolourations caused by Noctiluca scintillans
and Trichodesmium erythraeum. The recent reporting period witnessed the first blooms of Astrionellopsis
glacialis, Guinardia sp., Skeletonema sp., cf. Heterocapsa sp., Dinophysis caudata , Prorocentrum dentatum,
Prorocentrum rhathymum , Fibrocapsa japonica, Gymnodinium catena turn, Oscillaroria sp., and Anabaena
circinalis.

The frequency of blooms appears to have increased over time with a shift in maximum bloom activity
from January (1990 to 1999) to October (2000 to 2009). Peak bloom years correspond with El Nino
episodes, the most significant being 1997 to 1998 and 2002 to 2003. No significant difference was found
between the causative species or spatial distribution of dominant taxa over two decades. Differences were
observed in bloom type in estuaries with more ‘potentially harmful to marine organisms’ blooms during
1990 to 1999 and more ‘harmless’ blooms during 2000 to 2009. More ‘unidentified’ blooms were reported
during 2000 to 2009 compared to 1990 to 1999, for both marine and estuarine waters. We emphasize that
although algal bloom reports are ad hoc in their nature, they can contribute valuable baseline information,
which may suggest causative relationships for evaluating trends in phytoplankton ecology.
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INTRODUCTION

When microalgae (phytoplankton) significantly
increase in number, deviating from their species-
specific cycle of biomass, they are said to “bloom”
(Smayda 1997). Three major types of algal blooms
have been distinguished - those that are harmless
water discolorations, those that are harmful to marine
organisms (e.g. fish kills due to clogging of gills and /
or anoxic conditions) and those that produce toxins
that bioaccumulate in seafood products (Hallegraeff
et al. 2003). The most important public health
problems caused by algal toxins are Amnesic Shellfish
Poisoning (ASP), Ciguatera Fish Poisoning (CFP),
Diarrhetic Shellfish Poisoning (DSP), Neurotoxic

Shellfish Poisoning (NSP) and Paralytic Shellfish
Poisoning (PSP).

Algal blooms are driven by a combination of
hydroclimatic conditions, nutrient influx and/or species
specific triggers (e.g. micronutrient availability) and
while the rapid growth of microalgae can be a natural
phenomenon, it is considered that the prevalence of
algal blooms worldwide is increasing (Hallegraeff
2010). Progressive oceanic warming is projected
to further alter the biogeography, composition,
phenology and physiology of microalgae, and will
occur on timescales of decades to centuries (IPCC
2007). Rising sea-surface temperatures (SSTs) may
decrease or increase microalgal abundance depending
on global location. Tropical and midlatitude nutrient-
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limited environments are predicted to experience
a reduction in microalgal abundance, while higher
latitude environments (light-limited) are expected to
experience the inverse (e.g. Reid et al. 1998, Edwards
et al. 2006, Doney 2006, Moore et al. 2008, Hallegraeff
2010, Gladan et al. 2010). Changing water chemistry,
as exemplified by an increase in dissolved C0 2 and a
concomitant decrease in pH i.e. “Ocean Acidification”
(Cubillos et al. 2007, Hare et al. 2007, Rost et al.
2008), and the supplementation of micronutrients
via precipitation and dust deposition (Shaw et al.
2008, Hallegraeff 2010), are also predicted to alter
phytoplankton abundance and composition, favouring
some taxa over others. Geographical range extensions
in microalgae are already being documented, with
some species increasing their habitat range from
tropical and temperate waters to colder environments,
while certain coldwater assemblages are retracting
(reviewed in Hallegraeff 2010). An earlier onset of the
spring productivity period has already been observed
in terrestrial environments (Inouye et al. 2000), but is
now being reported for phytoplankton in the marine
environment (Kahru et al. 2011). This shift, however,
may not always be clear in the aquatic environment,
with variations among trophic units, functional
groups, phytoplankton physiology, cell size and
elementary stoichiometry all expected to alter with
progressive warming (Peperzak 2003, Edwards and
Richardson 2004, Hays et al. 2005, Ducklow et al.
2008, Wasmund 2008, Finkel et al. 2010).

Microalgal blooms in Australia have been
predominantly a freshwater problem to date. In
1991, 1000 km of New South Wales (NSW) Barwon-
Darling River experienced the world’s largest
cyanobacterial (blue green algal) bloom. Warm
temperatures and an influx of sulphate-rich saline
groundwater were implicated as the bloom drivers for
this massive toxic event (Donnelly et al. 1997). Algal
blooms in NSW coastal marine waters, on the other
hand, have been significantly smaller in scale and
generally non-toxic. In 1993, however, Hallegraeff
suggested that there had been an apparent increase
in the frequency, strength and extent of visible algal
blooms between the years 1984 and 1993 with few
bloom reports prior to 1984. Further investigation
demonstrated that for the period up until 1999,
blooms in NSW coastal waters were indeed becoming
more frequent and occurring most commonly during
the late summer, early autumn period, when cold,
nutrient-rich water was transported (upwelled) into
the warm surface layers (Ajani et al. 2001a, 2001b).
Microalgal blooms during this time were dominated
by the harmless dinoflagellate, Noctiluca scintillans
and the filamentous cyanobacterium Trichodesmium
erythraeum.

With over half a century of physical and
chemical data from NSW coastal waters now
under review, trends in water chemistry (declining
silicate, increasing salinity and nitrate), temperature
(increasing) and physical circulation (stronger flowing
East Australian Current, EAC) are emerging, with
consequences predicted for phytoplankton in south-
eastern Australian waters - increasing biomass in
autumn and early winter coupled with an increasing
component of flagellates in the autumn bloom period
(Thompson et al. 2009). In the absence of any
continuous phytoplankton composition data from
these waters, our study investigates the frequency
and causative taxa of observed algal blooms from
2000 to 2009 and, in combination with previous
bloom reports (1990 to 1999), we explore changes in
seasonal and annual occurrence of blooms, causative
taxa, bloom types and the spatial occurrence of two
dominant species over the past two decades. Whilst
it is recognised that blooms are spatially patchy, and
reporting is intrinsically subjective (often lacking
details such as bloom magnitude and duration),
the collation of this historical information provides
valuable baseline data, which may suggest causative
relationships for future hypothesis testing. The case
for more systematic reporting and unambiguous
identification of algal blooms in Australian coastal
waters to further strengthen this valuable, long-term
dataset is discussed.

MATERIALS AND METHODS

Algal blooms collated for this study were those
which occurred in the marine and estuarine coastal
waters of New South Wales, Australia (28°S to 37°S)
from the period 2000 to 2009 (Fig. 1). The majority of
blooms were visual water discolorations reported to
government agencies, local councils, water authorities
and universities from members of the public, local
council officers or beach life guards. Other potentially
harmful bloom reports, not evident as visible water
discolorations, were captured as a result of limited
phytoplankton monitoring programs carried out by
local councils, NSW Industry and Investment (NSW
Food Authority) and the NSW shellfish industry. The
NSW Office of Water also provided bloom reports from
Regional Algal Coordinating Committees (RACCs)
which manage the response to algal bloom events
in NSW. Where possible, algal bloom ‘observers’
were asked to complete an Algal Bloom Data Sheet
(Office of Environment and Heritage, OEH) that
included: date and time of bloom; location, extent
and duration of bloom; colour/appearance/odour of
bloom, weather conditions and sample details. If a
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Fig. 1. Map of New South Wales, Australia, showing major rivers and estuaries.
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water sample was collected, it was submitted to an
appropriate laboratory (as advised by the RACCs or
OEH), and the causative organism(s) identified by
suitably qualified microalgal taxonomists.

For the purposes of data assessment, blooms were
collated by date, location and causative taxa (these
were the only data variables common to all reports
across the sampling period) and classified into three
recognised bloom types-‘harmless’, ‘potentially
harmful to marine organisms’ and ‘potentially
harmful to humans’ (Hallegraeff et al. 2003).
Where a causative organism belonged to a genus
that contained both toxic and non-toxic species e.g.
Pseudo-nitzschia, and it was not possible to identify
down to the species level, the bloom was classified
conservatively into ‘potentially harmful to humans’.
Blooms that were not microscopically examined, that
is, no sample was taken from the bloom or the sample
deteriorated prior to examination, were classified as
‘unidentified’. We included these ‘unidentified’ bloom
reports in the final dataset for two reasons - to provide
a more accurate measure of bloom frequency and to
provide a historical record of bloom occurrences and
their locations in NSW coastal waters.

In order to gain a longer-term perspective of
reported bloom occurrences, algal blooms for the
2000 to 2009 reporting period were then pooled
with bloom data from the period 1990 to 1999, as
documented in the antecedent summary by Ajani
et al. (2001a). To explore any potential relationship
between the frequency of bloom events and regional
oceanographic variability, the number of reported
blooms was compared to a six-month running
average of the Southern Oscillation Index (SOI).
SOI values were obtained from the Australian
Governments’ Bureau of Meteorology website at
http ://www.bom. gov. au/climate/ current/soi2 . shtml.
Decadal differences were examined for annual and
seasonal bloom frequency, causative taxa, bloom
type and any potential latitudinal trend in the major
taxa (arbitrarily partitioned as being north or south
of Sydney). A paired t-test was applied for causative
taxa comparisons and Pearson’s Chi-square tests for
all other comparisons.

RESULTS

Current Reporting Period: 2000 to 2009
A total of 1 57 algal blooms were recorded for the

2000 to 2009 reporting period (Tables 1-4). Reported
blooms ranged from four in 2007 to 34 in 2003 (Fig.
2). Blooms were most frequent in October and least
frequent in July (Fig. 3). The majority of blooms were

‘harmless’ water discolorations (n=85), followed
by those that were ‘unidentified’ (n=49), those
‘potentially harmful to humans’ (n=19) and those
‘potentially harmful to marine organisms’ (n=4).

Noctihica scintillans and Trichodesmium
erythraeum were the two most commonly occurring
bloom species during this reporting period. In addition
to these taxa, novel blooms of the following taxa were
identified: the ‘harmless’ Asterionellopsis glacialis
(marine), cf. Heterocapsa sp. (estuarine), Guinardia
sp. (marine), Skeletonema sp. (estuarine) and
Prorocentmm dentatum (estuarine); the ‘potentially
harmful to marine organisms’ taxa Dinophysis
caudata and Fibrocapsa japonica; and those that are
‘potentially harmful to humans’ being Oscillaroria
sp. Anabaena circinalis, Prorocentmm rhathymum
and Gymnodinium catenatum (Table 5).

Decadal comparison: 1990-1999 to 2000-2009
To examine longer-term trends in bloom frequency

and causative taxa, we pooled data from the current
reporting period with data from the previous decade.
Over the twenty year reporting period a total of 280
blooms (n=123, 1990 to 1999; n=157, 2000 to 2009)
were reported. The frequency of blooms ranged from
zero in 1990 to 34 in 2003 with peak bloom years
occurring between 1997 to 1998 and 2002 to 2003
(Fig. 2). These peak bloom events corresponded to
years of sustained negative SOI values (Fig. 4).

Blooms occurred most frequently from
January to March during 1990 to 1999, and from
October to November during 2000 to 2009 (Fig. 3). A
Pearson’s Chi-square test was conducted to investigate
this shift in maximum bloom occurrence, revealing a
significant difference between the two decades (X 2 =
99.3, p< 0.05).

Dominant bloom-forming taxa over the twenty
year period were Noctihica scintillans, Trichodesmium
erythraeum and those belonging to the ‘unidentified’
group. Five other recurrent taxa were noteworthy

Mesodinium rubrum, Gymnodinium spp.,
Heterosigma akashiwo, Alexandrium spp., Pseudo-
nitzschia spp. and Gonyaulax polygramma (Fig. 5).
‘Other’ blooms were those that only occurred once
across the sampling period. To examine if there had
been any significant change in the dominant bloom-
forming taxa overtime, a paired t-test was conducted
and found to be not significant (t = 0.49, p>0.05).

When blooms were examined by type, both
marine and estuarine waters were dominated by
‘harmless’ blooms (Fig. 6a). To examine if bloom
type had changed between the two sampling periods,
a Pearson’s Chi-square test was performed on pooled
marine and estuarine data, revealing a significant
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Table 1. ‘Harmless’ algal blooms reported from New South Wales marine (M) and estuarine (E) waters
2000 - 2009 *

Date
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Table 1 continued
27- Mar-2003
07- Apr-2003
08- Apr-2003
23 - Apr-2003
24- Apr-2003

07-May-2003
23-Jul-2003

21 - Oct-2003
18-Nov-2003
28- Nov-2003

4- Dec-2003
29- Dec-2003

2-Jan-2004
2-Feb-2004
5 - Feb-2004
4-Mar-2004

12-Aug-2004

25- Aug-2004
04-Feb-2005
22- Apr-2005
29-Apr-2005
18-Aug-2005
18-Aug-2005

9-Sep-2005
22- Nov-2005
23- Nov-2005
24- Oct-2006
11 - Nov-2006
20-Nov-2006

1 -Dec-2006
6- Dec-2006

12- Nov-2007
24-Dec-2007
6-Mar-2008

24- Sep-2008
1 - Oct-2008
2- Oct-2008
3- Oct-2008
1 -Jan-2009

20- Feb-2009
25- Apr-2009

21 - May-2009
21 -Aug-2009
20-0ct-2009

Kumell (M)
Bermagui Harbour (E)
Shelley Beach, Manly (M)
Port Hacking (M)
Port Hacking (M)
Berowra Creek (E)
Parsley Bay (Sydney Harbour) (E)
Rose Bay (Sydney Harbour) (E)
Lake Illawarra (E)
Botany Bay (M)
Middle Harbour (E) and Manly (M)
Belmore Basin (E)
Manly Cove (M)
North Head, Sydney Harbour (M)
Bundeena (M)
Cabbage Tree Bay (M)
Castlecrag, North Sydney and Cockle Bay, Syd Harbour
(E)
Clontarf Beach (Sydney Harbour) (E)
La Perouse (M)
Como/Oately, Port Hacking (E)
Wyong (E)
Newcastle Beaches (M)
Plantation Point, Jervis Bay (M)
Rose Bay, Balmoral Beach (M)
Bate Bay (M)
Sydney Northern Beaches and Newcastle (M)
Commonwealth Reserve, Solitary Islands (M)
Fairy Bower, Manly (M)
Solitary Islands (M)
Sydney South Coast Beaches (M)
Solitary Islands (M)
Mermaid Reef, Diamond Head (M)
Richmond River (E)
Lake Illawarra (E)
Paramatta River, Birkenhead Point (Sydney Harbour) (E)
Iron Cove, Clontarf Beach (Syd Harbour) (E)
Manly (M)
Woolloomooloo Bay (E), Seaforth (M)
Lake Macquarie (E)
Shelley Beach; Toowoon to Bateau Bay (M)
Solitary Islands (M)
Stockton Beach, Newcastle (M)
Manly Cove (M)
Park Beach, Coffs Harbour (M)

Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans
Trichodesmium erythraeum
Trichodesmium erythraeum
Prorocentrum dentatum
Mesodinium rubrum
Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans
Mixed diatoms
Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans

Noctiluca scintillans
Trichodesmium erythraeum
Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans
Trichodesmium erythraeum
Noctiluca scintillans
Trichodesmium erythraeum
Noctiluca scintillans
Trichodesmium erythraeum
Trichodesmium erythraeum
Trichodesmium erythraeum
Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans
Noctiluca scintillans
Anaulus australis
Anaulus australis
Noctiluca scintillans
Trichodesmium erythraeum

#Mesodinium rubrum = ciliate with microalgal symbionts
*Ofhce of Environment and Heritage unpublished data.
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Table 2. ‘Potentially harmful to marine organisms’ algal blooms reported from New South Wales ma-
rine (M) and estuarine (E) waters 2000-2009*

Date

*Office of Environment and Heritage unpublished data.

Table 3. ‘Potentially harmful to humans’ algal blooms reported in New South Wales marine (M) and
estuarine (E) waters 2000-2009*

Date

*Office of Environment and Heritage unpublished data.
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Table 4. ‘Unidentified’ algal blooms reported from New South Wales marine (M) and estuarine (E)
waters 2000-2009*
Date

*Office of Environment and Heritage unpublished data
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Figure 2. Total number of reported blooms per year for the previous reporting period
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Figure 4. Total number of reported blooms per year (left axis) and six month running
average of the Southern Oscillation Index value (right axis). Arrows show peak bloom
years corresponding to sustained negative SOI values (El Nino episodes).
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Figure 5. Percentage frequency of bloom reports for major microalgal taxa across the two
reporting periods; grey bar=1990-1999; black bar=2000-2009; abbreviations N. scintillans
= Noctiluca scintillans ; T. erythraeum = Trichodesmium erythraeum ;
M. rubrum = Mesodinium rubrum; H. akashiwo = Heterosigma akashiwo ;
G. polygramma = Gonyaulax polygramma; S. trochoidea = Scrippsiella trochoidea.
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Figure 6. Percentage contribution of reported blooms to bloom type categories in a) total contribution
of marine and estuarine blooms; b) estuarine waters only; and c) marine waters only; grey bar=1990-
1999; black bar=2000-2009.
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mEo
north
south

bloom frequency. The number of blooms
for each taxon was partitioned as occurring
north or south of Sydney. A Chi-square test
was performed on this latitudinal frequency
distribution, revealing no significant
difference for either Noctihica scintillans
(X 2 = 1.22, p >0.05) or Trichodesmium
erythraeum (X 2 = 0.31, p >0.05) overtime
(Fig 7).

DISCUSSION
1990-1999 2000-2009 1990-1999 2000-2009

Noctiiuca
scintillans

Trichodesmium
erythraeum

Figure 7. North (grey bar) and south (black bar) distribu-
tions of total number of reported blooms for the two domi-
nant bloom forming taxa, Noctiiuca scintillans and Trichode-
smium erythraeum for the earlier reporting period 1990-1999
(grey bar) and the current reporting period (2000-2009). Im-
ages xlOO magnification.

difference between decades (X 2 = 78.0, p < 0.05).
To further elucidate where these differences lie,
marine and estuarine bloom types were examined
separately. Chi-square tests were applied to each
dataset to examine if there had been any change
overtime in either of these environments. For
those blooms principally occurring in waterways
identified as estuaries, significant differences were
revealed between decades (X 2 = 19.6, p < 0.05), with
significantly more c potential ly harmful to marine
organisms’ blooms reported during 1990-1999, a
higher frequency of ‘harmless’ blooms during 2000 to
2009, and a greater number of ‘unidentified’ blooms
during 2000 to 2009 (Fig 6b). For those occurring
in the marine environment, a significant difference
was also seen between ‘unidentified’ blooms, with a
greater number being reported in the current reporting
period (X 2 = 71.8, p < 0.05) (Fig. 6c).

As shown in Fig. 5, two species remained
dominant throughout both reporting periods -
Noctihica scintillans and Trichodesmium erythraeum.
Given the emphasis on increasing S ST as a potential
driver for species range extensions and retractions, we
sought to test for a latitudinal trend in their reported

Microalgal blooms in NSW coastal
waters  are  frequently  reported  to
government agencies, water authorities
and local councils. We have shown that
these reported blooms are dominated
by harmless water discolourations, the
majority of these being caused by the large
dinoflagellate Noctiiuca scintillans and the
cyanobacterium Trichodesmium erythraeum
and this remains unchanged over the past
twenty years. Whilst historically Noctihica
scintillans has always been a relatively
minor component of the phytoplankton
community (Dakin and Colefax 1940,
Jeffrey and Carpenter 1974, Hallegraeff
and Reid 1986), its presence in NSW
coastal waters has significantly increased

in more recent years (Murray and Suthers 1 999, Ajani
et al. 2001a) and its range expanded into the waters
of Tasmania, South Australia, Western Australia and
Queensland (Hallegraeff 2010). Reported bloom data
presented covering the past twenty years suggests
that Noctihica scintillans remains a consistent red
tide organism in NSW coastal waters.

Although our data also suggests little change
in the frequency of Trichodesmium erythraeum
blooms over the past twenty years (Fig 4e), this taxon
is predicted to be a major beneficiary of long term
warming (Hallegraeff 2010). During a severe dust
storm in Queensland coastal waters in 2002, Shaw
et al. (2008) concluded that tropical cyanobacteria,
such as Trichodesmium erythraeum, were the
phytoplankton group that most likely accounted for
the stimulation in satellite-derived chlorophyll a
concentrations. The authors hypothesized that these
dust storms delivered a critical source of dissolved
iron into the water column and increased the standing
stock by natural fertilisation. It is anticipated that with
further drought predictions set to increase the number
of severe dust storms in Australia (Shao et al. 2007),
and an increase in the poleward extension of the EAC
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(bringing subtropical water further south) (Ridgway
2007), Trichodesmium erythraeum blooms will
increase in frequency, and/or shift their interannual
timing, in NSW coastal waters.

While Noctihica scintillans and Trichodesmium
erythraeum are both ‘harmless’ bloom taxa, microalgal
bloom type requires more focused investigation in
relation to ocean warming (Moore 2008, Hallegraeff
2010). Our limited understanding of marine ecosystem
function and how it will respond to climate warming,
coupled with a limited knowledge of phytoplankton
physiology and ecology in NSW coastal waters, make
it difficult to predict how the frequency of these bloom
types we detail in this work will change over time.
Estuarine data from our study show more ‘potentially
harmful to marine organisms’ blooms during 1990 to
1999 compared to 2000 to 2009, and more ‘harmless’
blooms during 2000-2009 compared to previous
years. Whilst it is difficult to explain these results in
light of potential bloom drivers, the greatest increase
in bloom frequency in these waters occurred in the
‘unidentified’ bloom type. The increasing number of
‘unidentified’ blooms in our dataset highlights the
need for more systematic reporting and unambiguous
identification of the causative species of blooms in
NSW coastal waters. Accordingly, data such as bloom
magnitude, bloom duration and spatial extent of
each bloom would provide a more robust dataset for
predicting interannual and long term trends in bloom
types, and may provide a clearer understanding of
species range extensions or retractions.

Within the annual cycle of reported blooms, the
frequency of blooms appears to have altered over the
past two decades. Maximum bloom activity occurred
in January during the 1990 to 1999 reporting period,
and shifted to October during the more recent
period. In the absence of a continuous phytoplankton
community dataset with which to test the certainty of
this observed shift, the seasonal bloom data allows
us to hypothesise that the spring diatom bloom
observed regularly in these waters is experiencing
an earlier onset. This in turn may trigger an earlier,
secondary trophic effect resulting in an increase in
abundance of the heterotrophic, Noctihica scintillans.
Further detailed studies would be required to test this
hypothesis.

Our data indicates that the frequency of reported
blooms in NSW coastal waters has increased over
time. However, on decadal timescales, the El-Nino-
La Nina climatic cycle could be a major factor in
bloom frequency and may confound the overall
increase seen in reported blooms. Peak bloom periods
in our study were found to occur between 1997 to
1998 and 2002 to 2003 (Fig. 4). These correspond to

periods of sustained negative SOI values, indicating
El Nino episodes. While three El Nino episodes
occurred during our sampling period, the two most
significant of these warming phases were during 1 997
to 1998 and 2002 to 2003, when warmer than average
sea surface temperatures, a reduction in rainfall and
a decrease in the strength of the Pacific Trade Winds
in eastern Australia were documented. Thompson
et al. (2009) found that SeaWIF (Sea-viewing Wide
Field-of-View Sensor) chlorophyll a anomalies for
southeastern Australian waters were associated with
the transition from negative to positive SOI and were
also recorded during these years, 1997 to 1998 and
2002 to 2003. Maclean (1989) suggested a similar
relationship between bloom events and the El Nino-
Southern Oscillation when reviewing red-tides in
the Indo-Pacific region during the 1970s to 1980s.
Elsewhere in the Pacific region, the relationship
between bloom events and El Nino has also been
raised. A bloom of the toxic dinoflagellate Karenia
concordia along the north-eastern coast of New
Zealand in 2002 occurred with El Nino conditions
prevailing, providing wind and upwelling conditions
favorable for phytoplankton growth (Chang and Ryan
2004). Yin et al. (1999) also reported that a series of
red tides in Hong Kong, causing millions of dollars
loss due to fish kills, occurred during the El Nino
event of 1997 to 1998. These blooms were linked
to the dramatic change in oceanographic conditions
observed during this phase.

Given the uncertainties associated with bloom
data, the relationship between bloom events and SOI
cannot be considered causative. Nevertheless, it allows
us to hypothesize that future peak bloom activity in
south-eastern Australian coastal waters is likely to be
coupled to shifts in the El Nino-Southern Oscillation
cycle. To test such a hypothesis, a phytoplankton
dataset would be required that consistently recorded
bloom information such as species abundance and
composition, bloom magnitude and bloom duration.
Such basic information is necessary to quantify the
spatio-temporal variability of these events. The
collection of such accurate and systematic bloom data
in NSW coastal waters requires localised, up-to-date
and accessible bloom manuals. These manuals must
be adequately resourced by the NSW government, by
way of the Regional Algal Coordinating Committees
(RACCs).

The case for historical/observational science,
such as presented here, is strongly re-emerging as
an important supplement to experimental science
(Francis and Hare, 1994; Sagarin, 2001, 2008). With
considerable knowledge gaps, and a critical need
to hastily understand the changes that a warmer
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world is bringing, Sagarin (2008) argues that non-
traditional data, such as presented here, can provide
meaningful temporal and spatial associations about
our shifting environment. Despite the limited nature
of this anthropogenically derived bloom data, such
as a rise in bloom reports due to an increase in
public awareness, population growth, urbanisation
of the coastal zone, increased reliance on fisheries
resources, and/or weather patterns etc. (see review
Ajani et al. 2001a), microalgal bloom reports can
contribute valuable historical information, suggest
causative relationships for testing and highlight key
data requirements for evaluating future trends in
phytoplankton phenology. The value of this type of
data has recently been recognized with the formation
of a global Harmful Algae Event Database (HAEDAT).
When fully established, this information system will
consist of data on harmful algal events, harmful algae
monitoring and algal bloom management systems
used throughout the world (http://iodeweb6.vliz.
be/haedat/index.php). It is anticipated that an algal
bloom dataset such as presented in this study will be
one of the first contributions from Australian waters
towards this global endeavour.
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