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Abstract. Endosymbiotic bacteria are commonly found in terrestrial arthropods and their effects have been studied
extensively. Here we present the first recorded case of endosymbiotic bacteria found in the spider family Anyphaenidae. A
fragment of the cytochrome oxidase c subunit I “barcoding” region belonging to unidentified Rickettsiales, presumably
belonging to the genus Rickettsia, was sequenced from six individuals of Amaurobioides africana Hewitt, 1917.
Keywords: Bacteria, barcoding, intertidal

The gram-negative proteobacteria are one of the most widespread
and diverse groups of bacteria, including medically important
pathogens, free-living nitrogen-fixing organisms, and the order
Rickettsiales, which contains obligate intracellular bacteria such as
Wolhachia and Rickettsia that can be found living inside the cells of
terrestrial arthropods (Ferla et al. 2013). These two genera have been
the subject of numerous studies in arachnids, as they represent
important pathogens in some cases (e.g.. Paddock et al. 2010), while
in others they are endosymbionts that manipulate their host’s
physiology, behavior and/or bias the host’s sex ratio to favor their
transmission (Rowley et al. 2004; Goodacre et al. 2006; Duron et al.
2008; Gunnarsson et al. 2009; Wang et al 2010; Vanthournout et al.
2011; Goodacre & Martin 2012, 2013). R/rA'ctti/a-infected spiders
have also been shown to display increased long-distance dispersal
tendencies (Goodacre et al. 2009). Bacterial endosymbionts are
usually transferred vertically in spiders, although there is evidence
for horizontal transfer in closely related taxa (Baldo et al. 2008).

Early methods of detection of bacterial endosymbionts in insects and
spiders relied on staining techniques (Cowdry 1923). With the advent of
PCR-sequencing techniques, molecular detection of specific endosym¬
bionts was made possible with relative ease, in the case of spiders
resulting in targeted studies (e.g., Baldo et al. 2008; Jin et al. 2013) or
sometimes as a byproduct of a study with a different aim (e.g., Rezac et
al. 2014 in Dysdera microdouta Gasparo, 2014). With bacteria-specific
primers, amplification of endosymbiont DNA from potential host
tissue provides positive results only for infected hosts. On the other
hand, more “universal” primers may find the annealing sites in both
host and symbiont, if said sites are conserved enough for the genomic
region. One such case appears to be the “barcoding” fragment of the
Cytochrome Oxidase C subunit I (COI), a protein-coding gene that
appears to have its origins deep within the origins of life on the planet
(Castresana et al. 1994). The fact that COI has highly conserved
regions means that certain primers can be used across a wide range of
organisms to amplify the same gene region. This is advantageous if the
tissue used for DNA extraction exclusively belongs to one species.
However, in the case of organisms hosting endosymbionts, this could
be seen as a complication, although for large-scale barcoding studies, it
has been shown to be manageable (Smith et al. 2012).

As part of a larger study on the intertidal anyphaenid genus
Amaurobioides O. Pickard-Cambridge, 1883 (Araneae: Anyphaeni¬
dae) (Ceccarelli et al. in prep.), DNA was extracted from leg tissue of
19 individuals of A. africana Hewitt, 1917 and approximately 630
base-pairs of the COI gene fragment were amplified and sequenced
using the primers LCOI 1490 (Folmer et al. 1994) and HCOoutout

(Prendini et al. 2005). For six out of the 19 individuals, the sequenced
COI region did not belong to the targeted host species, but to an
unknown species of the order Rickettsiales, presumed to be an
intracellular symbiont. There was no variation in the nucleotides of
the six sequences obtained, indicating that the A. africana individuals
in this study were all infected with the same bacterial species. The
sampling localities of the six infected specimens are shown in Fig. la
and the COI sequences have been deposited in GenBank (accession
numbers KU600819-KU600824).

The identification of the Rickettisales COI sequences amplified in
this study was based on comparisons to sequences available in the
public databases International Barcode of Life Database (BOLD
systems; http://www.boldsystems.org/) and GenBank (http://www.
ncbi.nlm.nih.gov/genbank/). The information available from BOLD
was minimal (the level of identification provided was to the order
Rickettsiales) and there were cases of misidentification in GenBank,
as the BLAST-quened sequences from this study were 99% identical
to COI sequences labelled as “Hymenoptera sp.”, while the correct
identification as proteobacteria started at 90% identity.

At this point, questions relating to why non-bacterial primers
preferentially amplified COI regions of endosymbionts rather than host
DNA in this study—even resulting in clean sequences (rather than a mix
of host and symbiont amplicon)—remain largely unanswered. A visual
inspection of the priming sites revealed that 9 Rickettsiales COI
sequences downloaded from GenBank had 80-90% identity in the last
10 base-pairs towards the 3' end of the forward and reverse primers. This
base-pair identity, coupled with the possibility of a very high number of
endosymbiotic Rickettsiales, may have been enough to give initial
preference and later exclusivity to the bacterial over the host DNA for
primer annealing and DNA amplification during PCR. As mentioned
earlier, the presence of endosymbionts is not thought to interfere with
DNA barcoding of arthropods when using universal primers (Smith et
al. 2012). However, the possibility still exists that COI sequences of
endosymbionts are obtained when in fact the target organism is the host,
as shown in this study, along with other isolated cases (e.g., Rezac et al.
2014) and the presence of misidentified Rickettsiales COI sequences in
GenBank (where the target organism was the host and thus the
identification was placed as Hymenoptera sp.).

Of the COI sequences in GenBank from Rickettsiales (all belonging
to the genus Rickettsia) with an identity score >75% for the sequences
from this study, ten were selected for Bayesian phylogenetic analyses,
along with a sequence from a closely related genus (Orientia, based on
Weinert et al. 2009), four sequences of Wolhachia and a sequence
belonging to Anaplasma, to root the tree. The COI sequences were
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Figure 1.—a. Map showing localities where Rickettsiales-infected specimens of Amaurobioides africana were collected; b. Bayesian
phylogenetic tree of COI sequences for selected Rickettsia species and specimens from closely related genera, obtained from the NCBI database.
Nodal support in Bayesian posterior probability (PP) represented by filled (0.95 < PP <= 1) and empty {0.9 < PP <= 1) circles. GenBank
accession numbers are shown after taxon names in brackets. Terminal taxa labelled as NEW SEQUENCE are from this study. Colored boxes
around taxon names represent host classes (blue = Insecta; red and yellow = Arachnida; arachnid orders: red = Acari; yellow = Araneae); c.
Genera! habitus of A. africana', d-e. Rock faces in the intertidal zone at De Hoop Nature Reserve, showing abandoned retreats (arrows) of A.
africana (d), and at Jeffrey’s Bay, showing sealed retreats of A. africana (e). Photos: C.R. Haddad.

aligned using TranslatorX (Abascal et a!. 2010) and a partitioning
strategy along with nucleotide substitution models for each partition
(TrNef+I, TrN+G and TrN+I-K5 for COI T', 2"^  ̂and 3''*  ̂codon
positions, respectively) chosen by PartitionFinder v.l.l.I (Lanfear et al.
2012). A Bayesian phylogenetic tree was obtained by forming a
consensus of 20,000 trees (minus 10% burn-in) from 20 million
generations of Markov Chain Monte Carlo simulations performed in
MrBayes v. 3.2.3 (Ronquist et at. 2012). Based on the phylogenetic tree
obtained (Fig. lb), the sequences from this study belong to an

unidentified Rickettsia species, closely related to a Rickettsia species
infecting the spider Dysdera microdonta. Apart from being confident
that A. africana can harbor the endosymbiont Rickettsia, a more in-
depth study is required to fully understand the distribution, ecology
and biology of the endosymbionts detected in this study.

Of particular interest in this relationship is the biology of the host
spiders, which are exclusively found in the intertidal zone of rocky
shores in marine habitats (Fig. !c). The spiders regularly construct
their silken retreats in rock faces (Fig. Id, e), which they seal with silk
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during high tide to avoid immersion in salt water, emerging at low
tide to forage (Lamoral 1968). Therefore, transmission of the
symbionts through the water medium in which the spiders occur
seems unlikely. Apart from the most likely transmission pathway of
the endosymbionts in A. africana being vertical transmission, the
possibility of horizontal transmission should not be ruled out at this
stage; a plausible additional explanation may be the transmission of
the endosymbionts during ingestion of prey tissues, such as isopods,
amphipods and dipterans that occur in the intertidal zone (Lamoral
1968). Further, the possibility that the same endosymbionts may
infect various other spiders and pseudoscorpions occurring in the

 ̂intertidal zone in South Africa (Lamoral 1968; Haddad & Dippenaar-
: Schoeman 2009; Larsen 2012; Owen et al. 2014), and the platygastrid

wasp egg parasitoid of the only other truly exclusive intertidal spider
in South Africa, Desis fonnidabilis (O. Pickard-Cambridge, 1890)

: (Desidae), viz. Echthrodesis lamorali Masner, 1968 (Owen et al. 2014),
requires further investigation. Nevertheless, this study represents the
first record of Rickettsiales in anyphaenids and is a contribution
towards a broader understanding of proteobacteria in spiders.
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