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The  center  of  activity  (Hayne,  1949),  the  arithmetic  mean  of  Cartesian
coordinate  vectors,  has  been  widely  used  as  the  single  best  statistical
estimator  of  an  individual  animal's  location  over  a  given  time  interval.
Although  several  authors  have  questioned  the  biological  relevance  of  the
center  of  activity  (Hayne,  1949;  Harrison,  1958;  Smith  et  al.,  1973;
Stickel,  1954;  Tanaka,  1963),  most  workers  have  found  it  useful  in  itself
(Barbehenn,  1974;  Cooper,  1978;  Doebel  and  McGinnis,  1974;  Gipson
and  Sealander,  1972;  Koeppl  et  al.,  1979;  Post,  1974)  and  as  a  basis  for
many  statistical  home  range  models  (Calhoun  and  Casby,  1958;  Currie  and
Bellis,  1969;  Dice  and  Clark,  1953;  Harrison,  1958;  Jennrich  and  Turner,
1969;  Koeppl  et  al.,  1975,  1977;  Mazurkiewicz,  1969,  1971;  White,
1964).

In  recent  years  statisticians  have  criticized  the  arithmetic  mean  for  its
sensitivity  to  outliers  (Andrews  et  al.,  1972;  Huber,  1972).  One  of  the
virtues  of  the  arithmetic  mean  is  that  it  incorporates  all  observations,
equally  weighted,  but  this  also  is  one  of  its  weaknesses  because  a  large
error  in  any  measurement  is  reflected  in  the  sample  mean;  for  this  reason
the  arithmetic  mean  lacks  robustness.  Consequently,  statisticians  have
proposed  a  number  of  robust  location  estimators.  An  excellent  compara-
tive  study  of  68  of  these  robust  location  estimators  was  performed  by
Andrews  et  al.  (1972).

Because  the  concept  of  robust  estimates  of  location  may  be  new  to
vertebrate  biologists,  we  introduce  here  a  simple,  hypothetical  example  of
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a  robust  estimate  of  location  applied  to  a  frequency  distribution  contami-
nated  with  outliers  (Fig.  1).  It  is  clear  that  there  is  a  central  distribution  in
the  interval  1-9  containing  95%  of  the  observations.  Two  of  the  observa-
tions  (at  16  and  19)  appear  to  be  remote  from  the  central  distribution  and
are  potential  outliers.  The  mean  of  all  observations  is  5.575.  When  we
apply  a  simple  robust  estimate  of  location  to  this  sample  by  symmetrically
trimming  5%  (2'/:%  from  each  tail  of  the  distribution)  and  computing  the
mean  on  the  remaining  observations,  we  achieve  the  value  5.461.  If  we
increase  the  percentage  of  trim  to  10  and  then  20%,  we  see  that  the
estimates  of  location  which  result  (5.342  and  5.139,  respectively)  more
closely  approximate  the  mean  of  the  central  distribution  (4.947).  It  is
interesting  that  trimming,  when  performed  on  observations  which  are  part
of  the  central  distribution,  but  ostensibly  not  outliers,  produces  only  a
relatively  small  deviation  in  the  estimate  of  location.  Thus,  light  symmetri-
cal  trimming  prior  to  the  computation  of  the  mean  seems  to  provide  an
intuitively  better  estimate  of  location  than  the  traditional  mean  on  the  full
data  set.  Hence  this  procedure  qualifies  as  a  robust  estimate  of  location.

Another  intuitive  way  of  appreciating  robust  estimates  of  location  is
through  the  sensitivity  curves  discussed  by  Andrews  et  al.  (1972).  Suppose
we  had  a  sample  of  19  normally  distributed  observations  to  which  a  20th
observation  is  added.  If  the  20th  observation  coincides  with  the  mean  of
the  19  observations  the  mean  on  the  full  20  observations  is  unaffected.
However,  if  the  20th  observation  deviates  from  the  mean  of  the  19
observations,  the  mean  of  the  20  observations  also  deviates  '/20th  of  the
magnitude  of  the  deviation  of  the  20th  observation.  By  varying  the  value  of
the  20th  observation,  while  keeping  the  other  19  constant,  and  computing
the  estimate  of  location  each  time,  we  can  summarize  our  results  in  a  plot
of  the  estimate  of  location  as  a  function  of  the  variable  observation  (Fig.
2).  We  call  this  kind  of  plot  a  sensitivity  curve.  The  sensitivity  curve  of  the
mean  is  represented  as  a  straight  diagonal  line  because  the  estimate  of
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Fig. I. A simple, hypothetical distribution contaminated by outlier (Arrows).
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Fig. 2. Sensitivity curves for the mean (diagonal line, M) and simple robust estimates of
location achieved through various percentages of symmetrical trimming of the tails of the
distribution prior to computing the mean of the remaining observations.

location  is  always  directly  proportional  to  the  deviation  of  the  20th  point
from  the  mean  of  the  first  19.  If  we  repeat  this  procedure  using  various
percentages  of  symmetrical  trim,  the  additional  lines  of  Figure  2  are
accounted  for.  It  is  clear  from  these  lines  that  the  magnitude  of  an  estimate
of  location  using  trimmed  data  is  bounded.  When  the  deviation  of  the  20th
point  from  the  mean  is  small,  the  estimate  of  location  is  close  to  the
untrimmed  mean.  As  the  20th  observation  deviates  farther  from  the  mean,
it  falls  into  the  region  to  be  trimmed  and  so  does  not  affect  the  trimmed
estimate.  More  severe  trims  reduce  the  range  of  values  which  will  be
included  in  the  estimate  of  location,  thus  narrowing  the  distance  between
bounds.  These  bounded  curves  are  characteristic  of  robust  estimates  of
location.

Because  the  center  of  activity  employs  the  arithmetic  mean,  it  too  is
sensitive  to  outliers,  and  therefore  is  not  robust.  Hayne  (1949)  surmised
this  when  he  wrote,  ".  .  .  the  implication  inherent  in  the  algebra  [for
computing  the  center  of  activity]  that  relative  importance  is  according  to
the  first  power  of  the  distance  and  number  of  points  of  capture  is  entirely
unproven."  It  is  timely  to  appraise  the  traditional  computation  of  the
center  of  activity  in  light  of  these  alternative  methods  and  arguments.  We
will  not  comprehensively  compare  many  of  the  various  robust  location
estimators  proposed  because  Andrews  et  al.  (1972)  have  already  done  so.
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We  will,  however,  apply  several  robust  estimators  which  Andrews  et  al.
(1972)  thought  promising  to  two-dimensional  radio-tracking  data  of  an
urban  striped  skunk  (Mephitis  mephitis),  primarily  to  illustrate  their
properties  and  use,  but  also  as  an  example  of  a  practical  problem
frequently  arising  in  studies  of  animal  movement.

Materials  and  Methods

Radio-tracking

A  striped  skunk  captured  in  Lawrence,  Kansas,  on  6  September  1977
was  fitted  with  a  23-gram,  pulsing  transmitter  having  a  mercury  controlled
activity  switch  and  whip  antenna  (obtained  from  Wildlife  Materials  Inc.,
Carbondale,  Illinois),  and  released.  Transmitter  broadcasting  radius  was
2.  1  miles  and  battery  life  250  ±  50  days.  A  portable  12-channel  continuous
frequency  receiver  (from  the  same  company),  with  a  range  of  150.9  to
151.0  MHz  was  used  to  monitor  the  signals.  Each  time  the  skunk  was
located,  the  peak  and  two  nulls  were  recorded  as  compass  azimuths  as  well
as  time  of  day,  location  of  observer,  and  temperature.  Gain  settings  and
signal  intensity  measured  with  a  VU  meter  allowed  estimation  of  receiver-
transmitter  distance.  From  these  data,  location  coordinates  of  the  skunk
were  obtained.

Three  observers  alternated  tracking  sessions.  Two  sessions,  four  hours
in  length,  were  held  every  third  night  from  7  September  to  15  November
1977,  totaling  48  sessions.  Each  session  ordinarily  commenced  at  1900
hours  and  ended  at  0300  hours  CST.  Rain  during  a  scheduled  tracking
night  postponed  the  session  until  the  next  clement  evening.

Computational  Procedures

Computer  algorithms  for  calculating  the  various  estimates  of  location
in  this  study  were  taken  from  Andrews  et  al.  (1972)  and  adapted  for
FORTRAN  Y;  these  and  original  algorithms  for  calculating  the  sensitivity
curves  and  surfaces  were  run  on  the  Honeywell  66/60  computer  at  the
University  of  Kansas.  To  check  location  estimator  algorithms  we  re-
produced  the  sensitivity  curves  in  Andrews  et  al.  (1972).  Besides  the
traditional  mean  (M),  five  additional  estimates  have  been  chosen,  based  on
their  performance  over  a  range  of  sample  sizes  and  distributions.  Below,
we  briefly  describe  the  methods  employed,  but  for  the  exact  methods,
refer  to  the  algorithms  supplied  in  Andrews  et  al.  (1972).

Simple  Trimmed  Means  (M  and  10%)

If  the  proportion  (a)  of  observations  trimmed  from  each  end  of  an
ordered  array  is  a  multiple  of  1/n  (n  =  sample  size),  then  an  integral
number  of  points  should  be  deleted  from  each  end  of  the  sorted  vector(v).
Otherwise,  a  weighted  mean,

L*={Pv  +v  +...Pv  }/{n(l-2a)}
v  ([an+1])  ([an  +  2])  (n-[an])'
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is  used,  where  P=  1  +[an]-an,  the  subscript  of  v  denotes  a  specific
element,  L*  is  the  estimate  of  location  which  results,  and  []  denotes  the
integral  portion  of  quantity  enclosed  (see  Andrews  et  al.,  1972:7).  An  a
value  of  0.0  yields  M;  when  a  =  0.05  the  location  estimate  is  a  10%  trim.

Restricted  Adaptive  Trimmed  Mean  (JBT)

The  value  for  a  is  chosen  to  minimize  the  asymptotic  variance  A:

A  =  1
(a)  2(l-2c*)  2

n — an
{  E  (v.-L*)  2  +  a(v  -L*)  2  +  a(v  -L*)  2  }
j  =  an+l  0)  a  (om+l)  or  1  (n-an)  a'  >

in  which  a  =  ([n/12/]/n)  and  ([n/4]/n);  the  trimmed  mean  having  the
smaller  of  these  two  variances  represents  the  robust  estimate  of  location
(see  Andrews  et  al.,  1972:9).

M-Estimates  (Sine  Function,  AMT;  Independent  Scale  Piecewise,  17A)

Both  M-  estimates  tested  involved  the  solution  to  the  equation
v — T *£*  (  v  -)  =  .

s l

For  AMT,  ¥(v)  =  sin  (v/2.1)  where  |v|<2.1tt.  Otherwise,  ¥(v)  =  0.0.
The  estimate  of  scale,  s,,  used  is  the  median  of  the  absolute  deviation
about  the  estimate  of  location,  L*;  this  estimate  is  revised  every  third
iteration  (see  Andrews  et  al.,  1972:15).

For  estimate  17A,  the  equation  above  was  solved  for  ^(v)  =  sign  of  v
times  y,  where

|v|  o^|v|<1.7

1.7  1.7^|v|<3.4

3.4<|v|<8.5
8.5-  |v

3
o  |v|^8.5

where  s,  is  the  median  of  absolute  deviations  from  the  median,  (see
Andrews  et  al.,  1972:14).

Multiply—  skipped  mean.  Max  (5k,  2  deleted)  (5T1)

Hinge  estimates  h,  and  h  2  (Andrews,  et  al.,  1972:18)  are  first
computed  on  v  where

v n
([  1),  n  not  a  multiple  of  4

4
hj  =  or

(  v  n  +  v  n  )/2,  n  a  multiple  of  4

4  4
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v  n  +  3
(n  +  1  -  [  a  ])  ,  n  not  a  multiple  of  4

h  2  =  or

(v  n  +v  n  )/2,  n  a  multiple  of  4.
(n+1-5)  n-V

4  4

Then,  t,  and  t  2  ,  scale  estimates  furthest  from  the  center  of  the  data  are
computed  as:

t  1  =h  1  -1.5  (h  2  -hj)

and  t9=h2+  1.5  (ho  —  hi)

An  initial  skipping  procedure  deletes  or  skips  observations  lying
outside  the  scale  estimates  (t,  and  t  2  ).  If  k  ^  1  observations  are  deleted  by
the  above  procedures  a  further  max  (2k,  1)  are  deleted  from  the  end  of  the
array  and  the  mean  is  computed  for  the  observations  remaining  (Andrews
etal.,  1972:18-20).

Sensitivity  Surfaces

To  study  the  behavior  of  bivariate  outliers  on  bivariate  sample
distributions  using  the  six  estimates  of  location  described  above,  we
plotted  sensitivity  surfaces,  the  three-dimensional  extension  of  the  sen-
sitivity  curves  (Andrews  et  al.,  1972).  The  method  was  as  follows:  the  x
and  y  sample  coordinate  vectors  for  19  points  were  scaled  to  the  interval
-  1.0  to  +  1.0  so  that  the  sample  estimate  of  location  was  at  the  origin
(0.0,  0.0),  and  the  relative  position  in  space  of  the  sample  coordinates  was
thus  preserved.  A  known  outlier  value  was  added  to  these  scaled  and
centered  sample  data.  The  x-  and  y-  coordinate  values  of  the  outlier  were
then  systematically  and  independently  varied  from  -5.0  to  +5.0  at
intervals  of  0.100000  and  0.166667  for  the  x-  and  y-axes,  respectively.
Deviations  (distances)  between  the  sample  activity  center  and  the  location
estimate  for  samples  with  known  outliers  were  represented  by  the  height
(z-coordinate)  for  any  x-  and  y-outlier  combination.  The  height  above  the
surface  has  been  shown  by  51  different  symbols  in  increasing  intervals  of
0.01  .  Every  second  interval  is  represented  by  a  different  symbol  so  that  the
final  figure  resembles  a  contour  map  and  can  be  similarly  interpreted.  In
all,  each  sensitivity  surface  is  represented  by  5150  discrete  printed
symbols;  sensitivity  surface  facsimiles  in  the  present  paper  (Fig.  3)  have
been  drawn  from  these  computer  generated  contour  maps.  A  similar
procedure  was  followed  using  the  10  unique  locations  for  the  radio-
collared  skunk,  contaminated  with  a  single  outlier  (Fig.  4).  Note  that
frequency  of  occurrence  at  each  location  was  disregarded.

Relative  Importance  Index

To  determine  the  effect  of  each  sample  observation  on  the  location
estimators  we  computed  a  relative  importance  index.  This  entailed
computing  the  Euclidean  distance  between  the  activity  center  of  the  entire
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sample  (n)  and  the  activity  center  with  an  observation  deleted  (n-1),
standardized  by  the  distance  between  the  activity  center  and  the  location
coordinates  of  the  deleted  observation.  We  then  multiplied  by  (n-1)  to
account  for  the  fact  that  observations  from  small  samples  would  be
expected  to  have  more  influence  than  those  from  larger  samples.  In
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Fig.  3.  Sensitivity  surfaces  for  six  algorithms of  the center  of  activity  on idealized
bivariate normal data to which a variable outlier was adjoined: A. arithmetic mean(M): B, 10
percent trim ( 10% ): C. restricted adaptive trimmed mean(JBT); D, M-estimate, sine function
weighted (AMT): E, M-estimate. independent scale piecewise weights(17A); F. multiply
skipped mean, max 5K. 2 deleted(5Tl). Each sensitivity surface can be interpreted like a
topographic map. but with the different shading representing different surface levels. For A,
levels are shown as alternating black and white bands with the lowest values at the center,
radiating outword. The remaining surfaces (B-F) in increasing magnitude, are shown by
dashed lines, black, white, and gray.
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mathematical  terms,  the  relative  importance  index  for  the  i-th  observation
(ojj)  may  be  represented  as:

[(L*  -L*  r  +  (L*-L*
x  n  x  (n-l)  y  n  y(n-l)

) 2 ]' /2 (n-l)

OJ:

[(L*-L  X  )  2  +  (L*-L  )  2  ]'  /2
v  n  i y  n  yr

♦4 2
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Fig. 4. Sensitivity surfaces computed for six algorithms of the center of activity on the 10
unique coordinates of the skunk data to which a variable outlier was adjoined. See legend of
Figure 3 for further details.
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When  L*  is  the  estimate  of  location  calculated  for  all  n,  x  coordinates;
x n

I*  is  the  estimate  of  location  calculated  for  all  n,  y  coordinates;
^n

LJ  is  the  estimate  of  location  of  n-  1,  x  coordinates;
x  (n-l)

L*  is  the  estimate  of  location  of  n  -  1  ,  y  coordinates;
y  (n-l)

L  v  is  the  x  i-th  coordinate  of  the  abscissa;
x i

L  is  the  y  i-th  coordinate  of  the  ordinate.

The  importance  index  may  vary  from  to  oo;  by  definition  0^  =  00  when
the  divisor  of  the  above  equation  is  zero.  A  co,  value  near  zero  denotes  a
coordinate  whose  deletion  does  not  influence  the  location  estimator.
Values  of  co;=  1.0  result  from  the  arthmetic  mean.

Several  robust  estimates  of  location  use  weighting  factors  which  are
similar  in  concept  to  our  relative  importance  index.  However,  the
importance  index  can  be  calculated  for  any  proposed  estimate,  not  just
those  employing  weighting  factors,  thereby  facilitating  comparison.

Results

Sensitivity  Surfaces

The  bivariate  sensitivity  surface  (Fig.  3  A)  clearly  shows  that  the
activity  center  or  bivariate  mean  is  unbounded  when  an  idealized  sym-
metrical  distribution  is  contaminated  by  outliers  of  increasing  magnitude.
This  is  indicated  by  the  regular  pattern  of  the  concentric  contours,  which
in  theory  form  an  inverted  cone  with  its  vertex  at  the  plot  center.

The  remaining  sensitivity  surfaces  for  the  robust  estimates  (Fig.  3B-F)
show  different  patterns;  all  achieve  plateaus  at  the  margins  of  the  plots  and
we  can  assume  that  they  remain  at  the  same  or  lower  level  if  extended
infinitely.  Another  notable  difference  between  the  surface  representing  the
bivariate  mean  and  those  representing  robust  estimators  is  the  existence  in
the  latter  of  valleys  radiating  from  the  center  of  the  surface,  oriented
parallel  to  the  fixed  axes  of  the  surfaces.  The  valleys  are  due  to
independent  consideration  of  the  x  and  y  coordinates,  in  which  outliers  are
recognized  by  extreme  x  or  y  coordinates  but  not  by  intermediate  values  of
both.  A  better  technique  for  identifying  outliers  would  be  to  rank
observations  according  to  distance  from  the  center  of  activity,  perhaps
using  a  standard  distance  such  as  a  Mahalanobis  distance  which  would
adjust  for  elongated  home  ranges.

When  the  10  skunk  locations  are  used,  the  location  and  shape  of  the
cone  representing  the  traditional  activity  center  are  the  same  (Fig.  4A).  It
is  interesting  that  although  the  sample  data  are  not  symmetrical,  the



10 OCCASIONAL  PAPERS  MUSEUM  OF  NATURAL  HISTORY

sensitivity  surface  is.  This  is  another  indication  that  the  traditional  activity
center  is  invariant  to  rotation  of  the  data.  Symmetry,  and  by  inference,
invariance  to  rotation,  is  not  exhibited  by  the  sensitivity  surfaces  for  the
robust  estimates  of  location  (Fig.  4B-F).  However,  their  robustness  is  still
apparent  from  the  plateau  features  which  extend  to  the  figures'  margins.

Analysis  of  the  Full  Data  Set

Seventy-nine  location  fixes  were  obtained  for  the  skunk  (Fig.  5).  Of
these,  90%  occurred  at  two  den  sites.  One  den  site  was  under  a  rear  porch
(Fig.  5,  location  3),  and  the  other  was  under  a  small  shed  (Fig.  5,  location
4).  Remaining  points  represent  the  location  of  capture  (Fig.  5,  location  1),
an  isolated  observation  (Fig.  5,  location  2),  and  a  single  night's  foray  (Fig.
5,  broken  line,  locations  5-10).  Although  the  actual  location  fixes  varied
about  the  den  sites,  we  attributed  the  variation  to  observational  error,
amounting  to  approximately  ±0.25  grid  units.

Estimates  of  location  were  computed  for  all  79  observations  and  the
relative  importance  indicies  for  each  point  were  determined  (Table  1).  The
indices  reveal  that  locations  1  and  2  (Fig.  5)  are  less  important  than  the
others,  which  make  up  a  cluster  of  points  around  the  den  sites.  Each  of  the
robust  estimates  of  location  is  nearer  the  principal  distribution  of  data
points  than  is  the  traditional  activity  center.

When  the  same  statistics  are  computed  on  10  unique  skunk  locations
which  are  less  heavily  centralized  (Table  1),  the  effect  on  the  relative
weights  and  estimates  of  location  were  similar  but  less  pronounced.

390

4 0C

405

410

255 260 265 270 285 290 300

Fig.  5.  Seventy-nine  location  fixes  of  an  urban  striped  skunk  (Mephitis  mephitis)
encompassed in 10 unique localities (1-10). The broken line represents the route traveled on a
single night*s foray.



ROBUST  STATISTICS  FOR  SPATIAL  ANALYSIS 11

-3t>u53C.Eo

c

>
o53

CUo
u

73c53

T3c
uuc53
Q.£
u>

06

ae<

oc00rM

r-oc

o  —  o  —

oc Q Of— o 5 —CQ ri 0- rN
"  ̂— — ly-i

■*
3

c, s — oo ri r-■tf V) — © O ■<*O O -t 3v r-~ oc o00fN

ci O "-, O rN </-, ci vo tj- o o rNr~ oc -rf O VO — VO Cl O c, c, i/*i oor— — f,  ov ri  a  i"l  -  n  ri  r.  m (N
""'odd  —  —  —  dddddb

^.  —  ooo^or-r^or^,  ir,  ocoo■  ̂— n — ■ — >/~, o p~ v, c c, oo —r^OOO  —  or--©  —  OOOO

h "■ O >t n o v, o o> c, tj- 'O ■*— — — n a ir. » - — — — — rN^  q  o  ©  —  ov  m  ©  —  oooo
<dd666-  dddddd

. o vo r- ci os oo v, o o oo r~ rNr  >o  t  *  *0  ^  f'  ^  ""'  ^i  "t  ""i  ^fflir,  vOi^Mr^t-  Ov  ^  >/-,  oo  -3-

oooofN

— ci u-; — o r- i/-,-MM rt CI c,  c  rf

ks Ci r~ in O — "4 3 s ov ri o <n rNo  ̂— r~ r~- rN oo vo >/i — o — rN ovO ci ci oc ov r-i c, in i/-, tj- Tt tj- ri

o  o  o^-  o  o  o2  o  o  o

C  O  —c,  Tfr

o  o  o

r-

vr,  qovr,  qooqoooo
>. Ov © 00 Ov 00 © Ov 00 V, — -t OvO-— OvOvOvOOOOOOOOvOvOvf~ t *t CI CI CI  ̂C-j Ci CI Ci Ci c*

oooo </-,  O  o  o  o  o  o
X O M oe ri 55 30 IT, h ^ c O 3>i/ir~r~ooooocooocov©oav(N M N in M N N ri ri  ci  c,  rN

OvCi

l/-iOvCj

Ov

i/~j Ov00 OvrM ci

00 Ov00 Ovn  ci

OvOv

O Ov00 Ovrj  ci

m Ov00 OvOOOOOO  (N  Ci

OOOOOO  c,  r~-"  o  o  o  o  o^  X  X  X  v/~,  oooo Ov(N Ci

j£ — M oO ir-,  vOr~ooovOo*x  *>.—  H  -)  -J



12  occasional  papers  museum  of  natural  history

Discussion

Computation  of  an  activity  center  is  often  useful  in  summarizing  the
locational  data  of  an  individual  as  a  single  point.  The  method  of  Hayne
(1949)  based  on  independent  arithmetic  means  has  been  the  traditional
method  for  accomplishing  this  task  but  it  lacks  robustness  because  it  is
unduly  sensitive  to  outliers  or  bad  data.  In  the  past,  researchers  have  dealt
with  this  problem  by  (1)  subjectively  discarding  the  apparent  outliers,  or
(2)  using  special  knowledge  of  the  data  as  a  guide  in  deciding  which
observations  were  valid  and  which  were  spurious.  In  our  example,  the
capture  point  was  likely  to  be  an  outlier  because  skunks  frequently  shift
their  home  ranges  after  capture  and  release  (Verts,  1967;  Verts  and  Storm,
1966).  (3)  Some  researchers  partition  their  data  set  into  several  arbitrary
subsets  for  separate  analysis.  Unfortunately,  this  only  relegates  the  outlier
to  a  smaller  subset;  the  problem  remains.  (4)  Purists  argue  that  to  practice
any  of  the  above  options  introduces  arbitrary  biases,  so  the  activity  center
should  be  computed  on  all  the  data,  in  the  hope  of  obtaining  cancelling
error.  (5)  All  of  the  above  are  rather  ad  hoc  treatments  of  outliers  in  spatial
data.  More  systematic  operational  procedures  are  widely  available
(Gnanadesikan  and  Kettenring,  1972;  Grubbs,  1969;  Brown,  1975;
Gentleman  and  Wilk,  1975;  Rohlf,  1975).  The  researcher  should  make  a
careful  concerted  effort  to  identify  outliers  and  distributional  peculiarities
in  the  data  set  prior  to  analysis.  Beyond  the  obvious  benefits  of  identifying
outliers,  the  researcher  also  gains  familiarity  with  the  data.  Outliers  in
themselves  are  not  "bad,"  but  are  often  records  of  interesting  but
transitory  phenomena.  By  definition  they  tend  to  obscure  the  measurement
of  central  tendency  or  main  effects.  The  researcher  can  devise  techniques
to  identify  and  propagate  outliers  for  closer  study,  or  can  eschew  them
when  determining  measures  of  spatial  central  tendency.

Robust  estimates  of  location  offer  a  reasonably  good  estimate  of  the
center  of  activity  regardless  of  the  presence  of  real  or  suspected  outliers.
In  exchange,  some  of  the  sensitivity  of  the  location  estimate  is  necessarily
lost.

Robust  estimates  of  location  can  enhance  spatial  analysis  in  a  number
of  ways.  First,  it  is  difficult  to  identify  all  outliers  in  the  large  amount  of
data  which  can  be  collected  methods  such  as  radio  telemetry.  Second,
spatial  data  of  wildlife  often  fail  to  follow  identifiable  statistical  distribu-
tions;  robust  estimates  of  location  are  less  dependent  on  distributional
assumptions  of  the  arithmetic  mean.  Third,  wildlife  make  forays  which
often  produce  outliers.  And  fourth,  wildlife  frequently  shift  their  home
ranges,  while  researchers  are  unable  to  determine  when  and  where  the
shift  actually  occurred  (Cooper,  1978).

All  of  the  results  discussed  thus  far  indicate  that  the  robust  estimates  of
location  differ  less  among  themselves  than  they  do  from  the  arithmetic
mean.  Hence,  the  choice  of  a  robust  estimate  to  use,  if  it  is  necessary,  is
almost  arbitrary.  We  favor  using  a  simple  trim  method  because  it  is
intuitive,  effective,  and  easy  to  compute.

In  conclusion,  robust  estimates  of  the  activity  center  provide  reliable
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estimates  of  location  even  with  outliers  in  the  data,  but  reduce  sensitivity.
If  outliers  in  spatial  data  are  suspected,  robust  estimates  of  the  center  of
activity  are  a  prudent  alternative  to  traditional  analysis,  because  of  their
high  sensitivity  to  outliers.  Using  the  mean  to  compute  the  center  of
activity  may  be  the  worst  of  the  available  alternatives.
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Summary

The  center  of  activity  is  useful  as  an  estimate  of  an  individual's  location  in
space  and  as  a  basis  for  many  statistical  home  range  models,  but  it  is
sensitive  to  outliers  (locational  data  remote  from  the  principal  distribu-
tion).  We  tested  some  newly  developed  "robust"  estimates  of  location,
which  are  less  sensitive  to  outliers  as  alternatives.  We  have  illustrated  their
properties  by  means  of  sensitivity  surfaces  and  relative  importance
indices,  and  applied  these  robust  estimates  to  locational  data  obtained  by
radio-tracking  an  urban  striped  skunk  (Mephitis  mephitis).
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