
2008. The Journal of Arachnology 36:388-393

Success  of  managed  realignment  for  the  restoration  of  salt-marsh  biodiversity:  preliminary  results  on
ground-active  spiders

Julien  Petillon'-^  and  Angus  Garbutt-:  'ERT  52  -  University  of  Rennes  I,  Campus  de  Beaulieu,  263  Avenue  du  General
Leclerc,  35042  Rennes  Cedex,  France;  ^Centre  for  Ecology  &  Hydrology,  Environment  Centre  Wales,  Deiniol  Road,
Bangor,  Gwynedd  LL57  2UW,  UK

Abstract. Since the early 1990s managed realignment, where formerly reclaimed land is re-exposed to tidal inundation
through breaching of coastal embankments, has been increasingly used throughout Northern Europe as a cost effective and
sustainable response to biodiversity loss and Hood management. This study aimed to evaluate the success of managed
realignment schemes that resulted in salt-marsh development for the restoration of spider assemblages. Restoration of salt-
marsh fauna was studied by comparing ground-active spiders between recently inundated land (3-14 years old) and pair-
matched, adjacent natural salt marshes. Natural reference salt marshes were characterized by a relatively low species
richness, the dominance of late-successional stage species such as Pirala piraticus (Clerck 1757), and the presence of species
preferring a closed vegetation canopy like Arctosa fidvolinecita (Lucas 1846) and Pardosa nigriceps (Thorell 1856). Restored
habitats were characterized by greater species richness than in reference habitat and by the presence of halophilic species
(Enoplogiuillici mordax (Thorell 1875) and Erigone longipalpis (Sundevall 1830)) and abundance of Pardosa pwbeckensis
(Westring 1861 ). These preliminary results argue for maintaining a maximum of successional stages in salt marshes, as they
increase the diversity of halophilic spiders.
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For centuries, coastal habitats have been impacted by
human activity where over-exploitation, habitat modification
and pollution have led to loss of biodiversity and ecological
resilience (Lotze et al. 2006). Changing climate and weather
patterns have accelerated losses in the recent past (van der Wal
&  Pye  2004).  Replacing  coastal  habitats  where  they  are
eroded,  inundated  or  otherwise  impacted  is  particularly
important given the high level of ecosystem service they
provide. Salt-marsh creeks provide spawning and nursery
areas for many fish species and their vegetation provides
roosting, nesting and feeding sites for birds. In addition to the
specialist fiora and fauna directly associated with tidal salt
marshes they are areas of high productivity providing a source
of organic matter and nutrients for adjacent marine habitats.
Since the early 1990s, restoring tidal inundation to formerly
reclaimed land, either through a breach in current coastal
defences or whole scale embankment removal (managed
realignment), has been increasingly used throughout Europe
as a cost effective and sustainable response to biodiversity loss
and flood management (French 2006).

Re-establishing self-sustaining plant communities are often
a primary goal of such restoration efforts as these communi-
ties perform many of the biological and economically desirable
functions  of  wetland  ecosystems.  Results  from  several
managed realignment schemes have shown that with fairly
minimal pre-treatment and management by allowing tidal
ingress through a simple, relatively small breach, the landward
realignment of coastal defences will quickly produce intertidal
mudflats on low-lying agricultural land (Garbutt et al. 2006).
If the elevation is suitable, mud flats will be colonized by salt-
marsh plants. Monitoring programs to date have focused on
the restoration of some functions, in particular sediment
dynamics, plant colonization, and bird usage (Wolters et al.

2()()5a), but at the moment nothing is known about the
restoration of terrestrial arthropod communities. This fauna
represents a special conservation interest as it is currently
endangered by numerous direct or indirect human impacts
such as diffuse soil pollution from adjacent cultivated fields,
eutrophication, and overgrazing (see the review of Adam
2002 ).

This study aimed to evaluate the success of managed
realignment for the restoration of salt-marsh biodiversity and
in particular  the response of  one arthropod community
(Araneae), which constitutes a major component of the salt-
marsh arthropod fauna (e.g., Meijer 1980; Petillon et al. 2007).
Ecological succession is defined as a non-seasonal, directional
pattern of species change (Morin 1999). Vegetation succession
in salt marshes is the result of the accumulation of nutrients in
the soil leading to an increase in plant biomass and changes in
species composition (OUT et al. 1997) and the frequency of
tidal inundation as determined by elevation. The responses of
plants to the habitat conditions found along successional
gradients are well  known, but few data are available on
responses of arthropods. According to current theories on
ecological  succession  and  former  results  on  salt-marsh
vegetation (e.g., Olff et al. 1997), we expect (i) greater spider
species richness in natural sites than in restored sites (i.e.,
increase  in  this  parameter  towards  a  climax)  and  (ii)
differences  in  spider  populations  between  natural  and
restoration sites (i.e., changes in species abundances along
successional stages). Both hypotheses will be tested in this
preliminary study by comparing ground-active spider assem-
blages between land recently re-exposed to tidal inundation
(3-14 year old) and pair-matched natural salt marshes.
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METHODS
Sampling design. — The present study was carried out in the

English county of Essex (S.E. England, UK). Sites breached as
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Figure 1. — Location of the 3 study sites (each site contains both restored and natural habitats) along the Blackwater River estuary (English
county of Essex, UK).

part of managed realignment schemes were sampled in June
2005 giving several examples of salt-marsh development on
former agricultural land. Along the Blackwater River estuary,
three sites were selected because they had adjacent, natural
areas  (Fig.  1):  Abbotts  hall  (Site  A,  5r47'10"N,  0°5r00"E,
breached  3  years  ago),  Tollesbury  (Site  B,  51°45'40"N,
0°50'00"E, breached 10 years ago), and Northey Island (Site
C, 51°43'00"N, 0°43'00"E, breached 14 years ago). Sites were
arranged as matched pairs with each managed realignment site
(coded R for restored site) having an adjacent reference marsh
(coded N for natural site) at the same elevation. The natural
salt marshes, adjacent to the managed realignment sites, were
only separated by the remains of the old embankment and
connected by the same creek network.

Spider sampling. — Cursorial spiders were sampled with
pitfall traps, consisting of polypropylene cups (8 cm diameter)
with ethylene-glycol as preservative. Ten pitfall traps were
installed along a 100 m long-transect at each site. Transects
were placed at the same elevation (± 0.01 m) within the
managed realignment site as that of the adjacent reference
marsh using a laser theodolite. The elevation was selected by
determining the range of the natural reference marsh by
topographic survey, then selecting an elevation at random.
Transects were placed parallel to the embankment and were
centered on the original breach in the seawall. Elevation was
used as a surrogate for tidal inundation to ensure that the
arthropod communities within the managed realignment sites
and reference marshes received equivalent submergence
frequencies, and was checked by observing the depth and
extent of the incoming tide for each site. No differences were
observed. Pitfall traps were spaced 10 m apart, this being
considered to be the minimum distance for avoiding interfer-
ence between traps (Topping & Sunderland 1992). Data used
in this study concerned the first dates of trapping in 2005 from
3-6 June. Catches in pitfall traps were related to trapping
duration and pitfall perimeter, which calculates an “activity
trappability density” (number of individuals per day and per
meter: Sunderland et al. 1995). All the spiders collected were
preserved in 70% ethanol, transported to the laboratory for
species identification and kept in the University collection

(Rennes,  France).  Nomenclature  follows  Canard  (2005),
except for Pardosa piirbecke/isis (see complete taxonomic list:
Table 1), absent from this work but now considered to be a
valid species (A. Canard pers. comm.).

Data analyses. — The assessment of restoration success was
conducted by comparing two conservation criteria, i) abun-
dance of target species and ii) species richness, between newly
created and natural areas. The use of stenotopic species is also
recommended in studying the impact of human activities and
management on arthropod communities (Samways 1993; New
1995; Dufrene c&, Legendre 1997). In this study, the target
species were halophilic species, defined by their preference or
exclusive presence in salt-marsh habitats, and rare species
belonging  to  the  Red  Data  Book  and/or  the  Review  of
Nationally Notable Spiders of Great Britain (both statuses
from Harvey et al. 2002). Halophilic species are able to resist
regular submergence by seawater (monthly in Europe) and the
resulting high soil salinities (Foster & Treherne 1976; Irmler et
al. 2002; Petillon et al. 2004). Species richness is widely used as
a conservation target (e.g., Noss 1990; Bonn & Gaston 2005).
The success of managed realignment was assessed by applying
2-way ANOVAs (GEM) to species richness and abundances
with habitat type (restored or natural), site (A, B, or C) and
their interaction (habitat type*site) as factors. In case of non-
normal  distribution  (according  to  Kolmogorov-Smirnov
tests), mean community variables were log-transformed to
meet the assumptions of these Factorial ANOVAs.

RESULTS
A total of 291 adult spiders belonging to 7 families and 27

species (see taxonomic list in Table 1) were caught in natural
and  restored  sites  in  2005.  Five  halophilic  species  were
recorded during the study, including two rare species: the
lycosid Arctosa fulvolineata and the theridiid Euoplogntha
mordax, respectively listed as Nationally Rare (status RDB3)
and Nationally Scarce (status Notable A). The comparison of
species composition between restored and natural sites showed
a relatively low number of species only found at the natural
sites (Table 1). Nine species were shared between natural and
restored  sites,  including  the  halophilic  species  Pardosa
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Table 1. — Taxonomic list, conservation interest (species in bold: interest is based on habitat and/or rarity according to Harvey et al. 2002),
and habitat specificity ( 1 : species only found in natural sites; 2: species shared between natural and restored sites; 3: species only found in restored
sites) of the spider species.

found only in restored sites, two of which were halophilic:
Enoploguatha niordax and Erigone longipa/pis.

GLM revealed significant effects of habitat on total number
of individuals, species richness, and on abundances for most
species (Table 2). Site had also a significant effect for these
species, resulting in several cases of significant interactions
between  sampling  site  and  habitat  type.  No  significant
differences were found between the abundances of three
species in natural and restored areas, despite higher abun-
dances of Piratci piraticiis in natural sites. For this latter, the
effect of sampling site was significant and nearly significant for
Temiiphcmtes tenuis.

Total number of individuals and total species richness were
higher in restored sites than in natural ones (Fig. 2). Mean
values of these parameters significantly differed between sites,
being greater in restored sites. Among the most abundant
species that could be compared between sites, three {Pardosa
purheckensis, Oedothorax apicatus, and O. fuscus) showed
abundances significantly higher in restored sites than in
natural ones.

Habitat age, habitat structure, and species richness. — In this
study, greater species richness was found in restored sites,
invalidating our first hypothesis of higher species richness in
natural habitats. In accordance to the results of Hurd & Fagan
(1992), we suggest that habitat structure determines ground-
active spider species richness rather than successional age per
se. For example, among the six species only found at natural
sites, the presence of at least two lycosid species can directly be
related to the presence of a dense vegetation cover: Pardosa
nigriceps, living on low vegetation (Roberts 1987), and the rare
Arctosa fidvolineata that inhabits the heterogeneous litter of
some salt-marsh habitats (Petillon et al. 2005a). The vegeta-
tion of the natural salt marshes sampled was characterized by
a closed canopy of perennial vegetation, in contrast to the
vegetation of the restored sites that had a mosaic of bare
ground, annual, and perennial plants (Garbutt & Wolters
2008). Such differences may also explain that some halophilic
species from young and open successional stages (e.g., Erigone
longipalpis and Oedothorax spp.) were not found in natural salt
marshes. In the restored sites, greater species richness would
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Table 2. — Species richness, number of individuals, and abundances (number of individuals/day/meter) of the main species (more than 5
individuals) by pitfall traps. Mean parameters are compared between restored and natural habitats by GLM (Whole model; (//'= 54).

Source

then be related to a greater spatial heterogeneity. In the case of
young successional stages with uniform habitat (e.g., inten-
sively grazed salt marshes), a general decrease in both plant
(Kleyer et al. 2003) and arthropod diversity (Petillon et al.
2007) are observed, supporting the hypothesis that spider
species richness is more determined by habitat structure than
by habitat age alone. Also, as web-building species richness is
expected to increase with vegetation height (Greenstone 1984),
this parameter should be higher in natural habitats than in

restored ones. That hypothesis will soon be tested by using
data from sweep-net and vortis samplings.

Determinants of species succession in salt marshes. — The
second hypothesis of differences in spider populations between
natural and restored sites was proven to be valid, especially
with the dominance of Pardosa piirheckeiisis in newly created
salt marshes. Dominance by a single wolf spider species at the
beginning of ecological succession has also been described
after fire (Pardosa saltans Topfer-Hofmaiin 2000 in an Alpine

Oedothorax apicatus O. fuscus Pardosa prativaga P. purbeckensis Pirata piraticus Tenuiphantes tenuis
Figure 2. — Total and mean (- 1 - 1 SE, « = 30) species richness (a), number of individuals (b) and species abundance (number of individuals/day/

meter) (c) in natural and restored salt-marsh habitats. * and ** indicate significant differences by GLM (P < 0.05 and P < 0.01, respectively; for
details on model results, see Table 2).
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deciduous forest: Moretti et al. 2002; Xerolycosa nemoralis
(Westring 1861 ) in a Finish pine forest: Koponen 2004, 2005).
In salt marshes, management practices leading to younger
successional stages (like sheep grazing and mowing) are
known to favor some halophilic species of high interest (Zulka
et al. 1997; Harvey et al. 2002; Petillon et al. 2007) by opening
soil and vegetation structures. Hurd & Fagan (1992) suggested
that  competition  for  prey  is  more  important  in  early
successional communities as prey is the limiting resource.
Interspecific competition (and mainly intraguild predation)
may explain the decrease of some species in late successional
stages (Petillon et al. 2005b). In this study, the comparison
between restored and natural habitats showed an important
shift in species dominance from Pardosa piirbeckensis to Pirata
piniticiis. Such a co-existence of these two lycosids has already
been reported from German salt marshes (e.g., Heydemann
1961) but does not seem to occur in France (Petillon et al.
2006). That poses the question of interactions of ground-living
spiders in these structurally simple ecosystems (Marshall &
Rypstra 1999), depending on successional stages. There is thus
a high interest in studying competition and predation between
P.  piirbeckensis  and  P.  piraticus  in  different  salt-marsh
habitats because previous studies have shown differences in
the interactions between both species: null (Shaefer 1974),
negative for P. piirbeckensis (Wise 1993) and positive for P.
piirbeckensis (Petillon pers.obs.).

Synthesis and perspectives. — The natural salt marshes were
characterized  by  a  relatively  low  species  richness,  the
dominance of late-successional stage species such as Pirata
piraticus, and the exclusive presence of large species preferring
a closed vegetation canopy like Arctosa fulvolineata and
Pardosa nigriceps. Restored habitats were characterized by
greater species richness than the adjoining reference habitats,
at least during the first years of succession. This is probably
due to a more heterogeneous habitat, favoring pioneer species
(mainly linyphiids). Restored habitats were also suitable for
some halophilic species, in terms of both presence (Enoplog-
natlia niordax and Erigone longipalpis) and greater abundance
(Pardosa piirbeckensis). Although these results need to be
confirmed by a long-term survey, they argue for maintaining a
maximum of successional stages in salt marshes as they
increase the diversity of halophilic spiders.

Some  ecological  points  need  to  be  studied  in  more
detail. Salt-marsh plants have been found to be effective in
colonizing  managed  realignment  sites,  albeit  predomi-
nantly  over  short  distances  from  the  local  species  pool
(Wolters et al. 2005b). In contrast, dispersal has proved to
be a critical element of arthropod patterns (e.g.. Den Boer
1970). Habitat isolation and size, as well as the fauna of the
surrounding habitats (Meijer 1980), could then influence
habitat colonization by spiders, leading to different succes-
sional  patterns  in  species  richness  between  plants  and
arthropods. As shown by significant interactions between
sites  and  habitats,  this  study  needs  to  be  completed  by
studying more specifically the influence of time on restoration
success (by considering separately young succesional stages)
and the infiuence of colonization process (i.e., relationships
between local, regional species pool and dispersal means,
especially for poor-disperser and rare species such as Arctosa
Jidvolineata).
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