B R E
 V IOM A

Museum of Comparative Zoology

US ISSN 0006-9698
Cambridge, Mass. 30 July 1976 Number 440

WEST INDIAN ANOLES: A TAXONOMIC AND EVOLUTIONARY SUMMARY 1. INTRODUCTION AND A SPECIES LIST

Ernest E. Williams ${ }^{1}$

Abstract

Accumulation of morphological, karyological and ecological data on West Indian anoline lizards permits and requires a taxonomic analysis more elaborate than usual and employing both formal and informal taxonomic categories. The categories are defined in this, the first paper of a series, and a species list of West Indian anolines displays the new arrangement.

INTRODUCTION

Since the pioneer study by Etheridge (1960) there has been a remarkable growth both in our factual knowledge and in the sophistication of our knowledge of one group of lizards - the anolines. This has been especially true in the islands of the West Indies. The mainland members have at the same time received less attention and have proved more refractory. (Certainly the latter fact has influenced the first.)

There is, however, nowhere any gathering together of the new knowledge. Partly this results from the continuing activity. Not even species lists have remained constant. A statement that Cuba or Hispaniola has x species is outdated before it is published. In the same way ecological information, ideas and theory have expanded far past the published record. It is not easy to keep on top of the field.

Just because of this it is necessary that beginnings of a summary be made. Both for old hands and for newcomers an exposition of how far we've come, where we are, and where

[^0]we might go will be a useful thing. I propose as a first step a taxonomic-evolutionary summary. The summary is inevitably provisional and, more than that, intended to promote research, provoke criticism and encourage the search for further evidence and the endeavor for greater understanding.

My objective has been to illuminate ecology and evolution. The taxonomic study I will here provide is one means to that end. The West Indian anoles are a group of enormous diversity, but the interest of this diversity is not in its bare existence but in its structure and origin - its balance, the interlocking of its parts and the historical paths by which this was achieved.

This is no simple radiation - not just the checkerboard subdivision of some original widespread unit. Here the severed units have doubled back upon one another and are completely layered, juxtaposed and interdigitated. The fitting together of so many species is the problem.

Such complexity involves several levels. One such level is generic. In the West Indies I recognize three very distinct genera, two genera autochthonous and old, species-poor and obviously relict, one genus species-rich beyond ordinary imagining, a colonizing and expanding group, a newer invader from the mainlands that adjoin the West Indies to the west and south. The latter is, of course, the group, as full of problems as of interest, that must receive the maximal attention it deserves.

In point of fact, there are few problems for the two old species-poor genera, but also little information.

One of these two genera, Chamaeleolis, is represented by two giant casque-headed arboreal species on Cuba which much resemble the tree-crown giants of the Anolis equestris group with which they share the island (Garrido and Schwartz, 1968). The species of Chamaeleolis, however, are more primitive osteologically, more chameleon-like in movement and appearance and apparently rarer than giant Anolis.

The other of the genera, Chamaelinorops, initially erroneously reported from the tiny mile-square island of Navassa, west of southwestern Hispaniola, is, in fact, from the south island of Hispaniola, dwarf, ground-dwelling and extremely peculiar osteologically. Richard Thomas (1966) recognizes only a single species.

Chamaeleolis and Chamaelinorops, except that they are true anoles sharing the characteristic adhesive pads of Anolis and the typical Anolis dewlap, are not close to each other nor to

Anolis. Their greatest interest lies in the possibility that they may represent an early (pre-Miocene ?) invasion of the Greater Antilles and may be relicts of an earlier island radiation of which we otherwise know nothing.

The three species just mentioned apart, the remaining anolines of the West Indies are here regarded as belonging to the genus Anolis. Fortunately this overlarge taxon divides naturally, as Etheridge showed in 1960, into two sections called by Etheridge alpha and beta. Though this is a dichotomy based on an apparently trivial character, it makes excellent geographic sense. Savage (1973) has suggested that, instead of two sections, two genera be recognized - Anolis Daudin (type Anolis carolinensis Voigt) and Norops Wagler (type Anolis auratus Daudin). This would substitute formal designations for the currently informal ones but it would leave no formal (or informal) term for the two sections (or genera) taken together. Savage's action is well taken if alpha Anolis are closer to Chamaeleolis and Phenacosaurus than to beta Anolis or the betas are closer to Chamaelinorops than to the alphas. This is a point I regard as at least doubtful, preferring to leave it in decent obscurity until there is more and better evidence. My own suggested phylogeny for anolines would have the alpha anoles the more primitive (as they certainly are in many respects), and the beta type of caudal transverse process (which does not resemble those of other iguanids or of other lizard groups) arising secondarily, but only once, from the alpha condition in which the transverse process is absent. The transverse processes of Chamaelinorops have only a verbal similarity to those of beta anoles; I question the closeness of the relationship. Richard Etheridge would disagree with this scheme fundamentally. Very recent immunological data (Dessauer et al.) reported at the 1974 meetings of the American Society of Ichthyologists and Herpetologists question the fundamental distinction. I remain convinced of the reality of the two groups but, while so much remains controversial, I do not see the value of the formal designation; it is not even useful mnemonically.

Mfans to Analysis of a Radtation: The Group Terms Utilized

The two sections of Anolis have, according to my interpretation, provided three and only three invasions of the West

Formal and Informal Categories Used

Section. The primary dichotomy, a group osteologically defined at the highest level below the genus. Proposed by Etheridge (1960) for his alpha-beta division with Anolis osteologically defined on presence or absence of transverse processes on posterior caudal vertebrae.

Subsection. A division setting off a major portion of a section, again osteologically defined. This term, not used by Etheridge, distinguishes punctetus and carolinensis subunits within the alpha section, basing them on the relationship of interclavicle and clavicle. In the shorthand terms used below, the relationship is described in terms of an arrow-shaped or Tshaped interclavicle.

Series. A phyletic unit under the subsection definable on multiple characters. Osteological, chromosomal and even scale characters are utilized. Ordinarily this includes more than one species group and displays substantial morphological and even chromosomal diversity, i.e., products of a complex radiation that inferentially included several intermediate or annectent forms now extinct.

I have found series to be the unit in terms of which evolution is most conveniently discussed. I shall, therefore, in succeeding papers mention more characters under this unit than under taxa at a higher or lower level. This permits higher comparability between series and puts on display also many of the features and conditions the evolution of which I will later trace.

This is not to say that the greater number of characters makes the definition of series sharper or more rigorous. On the contrary, precisely because series are the units within which evolution is most readily seen, recognition of series is a matter of some subtlety - as Tables 1-4 show. Morphological and karyological characters may broadly overlap (Table 1). Ecology and geography are major clues, but convergence in ecological adaptations is rampant (Table 2), and geography must be used with discretion.
A balancing of all the evidence - not all of which is on record in Tables $1-4$ - is the basis for the recognition of series.
subseries: a category utilized when a series has several recognizable subunits, ordinarily including more than one species group.

Indies - one by betas into Jamaica, one by alphas into Hispaniola, and a third by alphas into St. Lucia. (But see Yang, Soulé and Gorman [1974] for the evidence for a landfall for the third invasion in Grenada instead.) All the extraordinary proliferation, diversity and complexity of Anolis in the West Indies has arisen out of these three stocks by intra-island radiation and inter-island interchange. There is therefore a formidable problem in analysis.

Fortunately, part of the basic information is already available. A just published checklist of West Indian Amphibians and Reptiles by Schwartz and Thomas (1975) provides an informed and very carefu! list of Antillean taxa (including Anolis) with original citations and synonymies, as well as the distributions as known to the date of publication. The species are, however, listed alphabetically; no taxonomic arrangement or indication of relationship is attempted. The taxonomic ordering presented below, in remedying this, endeavors to synthesize a great deal of biological information.

I have myself seen 72 species or members of superspecies of West Indian anoles in the field, six additional alive in captivity, and 33 more as preserved specimens. Only three species, all very recently described from Cuba, are known to me only from descriptions (A. pygmaequestris, A. juangundlachi and A. fugitivus). I have collected and studied anoles on all four of the Greater Antilles, on several of the Lesser Antilles and on one island in the Bahamas. This field knowledge I regard as basic to an undestanding of the group. I have also participated in, encouraged or aided studies at many other levels - osteology, karyotypes, electrophoresis, aut- and synecological studies. All of this information is utilized in the classification below.

No classification can mirror perfectly the complexity of the evolutionary events that have produced the more than 100 species of West Indian Anolis. Nor, indeed, are the minuter details of relationship and evolutionary sequence so well understood (or likely to be) that we should attempt so perfect a system. Nonetheless the wealth of species to be allocated and the amount and variety of detail known about these same species seem to me to afford at once the possibility and the justification for an arrangement elaborate much beyond the usual. I therefore utilize a number of informal terms, partly based on those employed by Etheridge in 1960, but descending into greater detail. I define these below.

Formal and Informal Categories Used

Section. The primary dichotomy, a group osteologically defined at the highest level below the genus. Proposed by Etheridge (1960) for his alpha-beta division with Anolis osteologically defined on presence or absence of transverse processes on posterior caudal vertebrae.

Subsection.' A division setting off a major portion of a section, again osteologically defined. This term, not used by Etheridge, distinguishes punctetus and carolinensis subunits within the alpha section, basing them on the relationship of interclavicle and clavicle. In the shorthand terms used below, the relationship is described in terms of an arrow-shaped or Tshaped interclavicle.

Series. A phyletic unit under the subsection definable on multiple characters. Osteological, chromosomal and even scale characters are utilized. Ordinarily this includes more than one species group and displays substantial morphological and even chromosomal diversity, i.e., products of a complex radiation that inferentially included several intermediate or annectent forms now extinct.

I have found series to be the unit in terms of which evolution is most conveniently discussed. I shall, therefore, in succeeding papers mention more characters under this unit than under taxa at a higher or lower level. This permits higher comparability between series and puts on display also many of the features and conditions the evolution of which I will later trace.

This is not to say that the greater number of characters makes the definition of series sharper or more rigorous. On the contrary, precisely because series are the units within which evolution is most readily seen, recognition of series is a matter of some subtlety - as Tables 1-4 show. Morphological and karyological characters may broadly overlap (Table 1). Ecology and geography are major clues, but convergence in ecological adaptations is rampant (Table 2), and geography must be used with discretion.

A balancing of all the evidence - not all of which is on record in Tables 1-4 - is the basis for the recognition of series.
subseries: a category utilized when a series has several recognizable subunits, ordinarily including more than one species group.
species group: the products of a simple radiation but often including species now widely sympatric (they may exhibit chromosomal diversity). I have sometimes used species group for a single species when that species is very distinct and may well be the last remnant of a radiation.
species subgroup: employed when readily definable and sympatric subgroups can be determined.
superspecies: the products of a radiation, the representatives of which are still completely or mostly allopatric and usually chromosomally uniform. Species status often uncertain. (See below.)
species: the most recent evidence indicates that the recognition of valid species is much harder than was formally assumed. It cannot be routinely assumed that allopatry or parapatry imply subspecific status. As I indicate above, I have used the superspecies category for a number of equivocal or doubtful cases.
subspecies: intraspecies differentiation differs so much in different species that this unit is of very different value from one case to another. I do not report currently recognized subspecies in the species list below. I will do so in the detailed species group and species definitions to come, but I will do so without passing judgment on their validity. I imply only that the differentiation so indicated - in contrast with that implied by the use of superspecies - is clearly-intraspecific.

St. Lucia Blanquilla Bonaire

Grenada, Tobago St. Vincent
Island or Bank ${ }^{2}$
Cuba
Cuba

Hispaniola

St. Lucia
Blanquilla
Bonaire
Grenada, Tobago
St. Vincent

Genus \quad Chamaelinorops SCHMIDT
species barbouri SCHMIDT 1919
Genus Anolis DAUDIN
Alpha section
punctatus subsection
roquet series
iuciae species group
Genus \quad Chamaelinorops SCHMIDT
species barbouri SCHMIDT 1919
Genus Anolis DAUDIN
Alpha section
punctatus subsection
roquet series
iuciae species group
luciae species group
luciae Garman 1887 bonairensis Ruthven 1923 blanquillanus Hummelinck 1940 richardi superspecies
richardi Dumeril and Bibron 1837
griseus Garman 1887
griseus Garman 1887
Genus Chamaeleolis COCTEAU
species chamaeleonides DUMERIL
porcus COPE 1864
Genus
species
Genus

${ }_{1}$ My definit

1My definition of the West Indies is, like most definitions of the West Indies, idiosyncratic. I omit from this list the
anoles of Providencia and San Andres (pinchoti and concolor respectively) although other reptiles on these islands have West Indian affinities, because the anoles themselves have no Caribbean relatives. I include the anoles of Bonaire and Blanquilla (bonairensis and blanquillanus) because they are obvious members of the roquet species group of the southern Lesser Antilles.

West Indies, idiosyncratic
,
(b

No. 440 せ | 클 | 9 |
| :--- | :--- | ${ }^{3}$ The device of using capitals for the names of species describers except in the case of the members of superspecies is entirely for the purpose of making the sharply distinct sympatric species contrast with those closely related allopatric or mostly allopatric species about which questions of species status have often arisen. The emphasis on this difference does not imply that many or most of the members of superspecies are not biological species. Many are known to be in contact hout interbreeding or with only a small zone of infertile hybrids. It calls attention solely to the demonstrable fact that e differentiation of members of a superspecies has not achieved the grade of ecological differentiation that permits them be widely sympatric.

$\stackrel{\leftrightarrow}{\circ}$
introduced on Trinidad
Vincent,
Grenada, introduced on Trinidad, Guyana Barbados, Martinique

Island or Bank

Taxon
trinitatis REINHARDT AND LUTKEN ${ }^{3}$ roquet species group roquel superspecies aeneus Gray
extremus Garman 1840

cordii species group
roosevelti GRANT roosevelti GRANT 1931
ricordii superspecies
ricordii Dumeril and Bibron 1837 barahonae Williams 1962 baleatus Cope 1864
cuvier species group
cuvieri MERREM 1820
bimaculatus series

Culebra

Hispaniola Hispaniola Hispaniola

Puerto Rico

-

${ }^{3}$ The device
stratulus subseries evermanni species
Puerto Rico
Puerto Rico
Bahamas, introduced in Florida
Hispaniola, introduced in Florida Hispaniola
Gonave, Hispaniola
Hispaniola
Alto Velo St. Croix
Anguilla Bank
Saba
Statia Bank
${ }^{1}$ Webster and Burns (1974) demonstrated the distinctness of this taxon, but did not name it.
\quad Island or Bank
Antigua Bank
Redonda
Montserrat
Guadeloupe Bank
Marie Galante
Dominica
Antigua
Barbuda
Statia Bank
Anguilla Bank

[^1]

Taxon
Hispaniola
Puerto Rico
Puerto Rico
Puerto Rico
Puerto Rico
Puerto Rico
Inagua, Caicos
Mona Rico
Puerto Rio
Hispaniola
Puerto Rico
Hispaniola
Hispaniola
Puerto Rico
Puerto Rico
Puerto Rico
Puerto Rico
Puerto Rico
Inagua, Caicos
Mona Rico
Puerto Rio
Hispaniola
Puerto Rico
Hispaniola
Hispaniola
Puerto Rico
Puerto Rico
Puerto Rico
Puerto Rico
Puerto Rico
Inagua, Caicos
Mona Rico
Puerto Rio
Hispaniola
Puerto Rico
Hispaniola

Hispaniola
Puerto Rico
Puerto Rico
Puerto Rico
Puerto Rico
Puerto Rico
Inagua, Caicos
Mona Rico
Puerto Rio
Hispaniola
Puerto Rico
Hispaniola
Hispaniola
Puerto Rico
Puerto Rico
Puerto Rico
Puerto Rico
Puerto Rico
Inagua, Caicos
Mona Rico
Puerto Rio
Hispaniola
Puerto Rico
Hispaniola
Bank, Mariguana cristatellus subseries
pulchellus species group
gundlachi subgroup
gundlachi PETERS 1876
pulchellus subgroup
krugi PETERS 1876
pulchellus DUMERIL AND BIBRON 1837
poncensis STEJNEGER 1904
cristatellus species group
cristatellus superspecies
cristatellus Dumeril and Bibron 1837
scriptus Garman 1887
monensis superspecies
monensis Stejneger 1904
cooki Grant 1931
carolinensis subsection
cons carolinensis subsection
occultus series occultus series
sheplani subseries
sheplani SCHWARTZ 1974
occultus subseries
occultus WILLIAMS AND RIVERO 1965
darlingtoni series
darlingtoni species group
darlingtoni COCHRAN 1935 occultus series
sheplani subseries
sheplani SCHWARTZ 1974
occultus subseries
occultus WILLIAMS AND RIVERO 1965
darlingtoni series
darlingtoni species group
darlingtoni COCHRAN 1935 occultus series
sheplani subseries
sheplani SCHWARTZ 1974
occultus subseries
occultus WILLIAMS AND RIVERO 1965
darlingtoni series
darlingtoni species group
darlingtoni COCHRAN 1935 occultus series
sheplani subseries
sheplani SCHWARTZ 1974
occultus subseries
occultus WILLIAMS AND RIVERO 1965
darlingtoni series
darlingtoni species group
darlingtoni COCHRAN 1935

marcanoi Williams 1975

 cristatellus subseries cristatellus subseriespulchellus species group
gundlachi subgroup
gundlachi PETERS 1876
pulchellus subgroup
krugi PETERS 1876
pulchellus DUMERIL AND BIBRON 1837
poncensis STEJNEGER 1904
cristatellus species group
cristatellus superspecies
cristatellus Dumeril and Bibron 1837
scriptus Garman 1887
monensis superspecies
monensis Stejneger 1904
cooki Grant 1931
Island or Bank

Hispaniola
Hispaniola
Hispaniola

chlorocyanus superspecies ${ }^{1}$
chlorocyanus Dumeril and Bibron 1837 coelestinus Cope 1862 singularis Williams 1965^{2} hendersoni species group hendersoni superspecies hendersoni Cochran 1923 bahorucoensis Noble and Hassler 1933 dolichocephalus Williams 1963 carolinensis species group
carolinensis subgroup
carolinensis superspecies
[carolinensis Voigt 1832] ${ }^{3}$ porcatus Gray 1840
smaragdinus Barbour and Shreve 1935 fairchildi Barbour and Shreve 1935
maynardi Garman 1888
longiceps Schmidt 1919
Navassa
${ }^{1}$ These may be only ecological equivalents, not closest relatives. Were this demonstrated, the superspecies grouping should Republic.

Island or Bank

valencienni species group valencienni DUMERIL AND BIBRON 1837	Jamaica
sagrei species group	
sagrei superspecies	
sagrei Dumeril and Bibron 1837	Cuba, Bahamas, Little Cayman, costal areas of Mexico, Belize,
luteosignifer Garman 1888	Cayman Brac
bremeri Barbour 1914	Cuba
nelsoni Barbour 1914	Swan Island
homolechis superspecies	
homolechis Cope 1864	Cuba
quadriocellifer Barbour and Ramsden 1919	Cuba
jubar Schwartz 1968	Cuba
mestrei BARBOUR AND RAMSDEN 1916	Cuba
allogus superspecies	
ahli Barbour 1925	Cuba
allogus Barbour and Ramsden 1919	Cuba
rubribarbus BARBOUR AND RAMSDEN 1919	Cuba
imias RUIBAL AND WILLIAMS 1961	Cuba
ophiolepis COPE 1861	Cuba

TABLE 1^{11}
Selected characters of West Indian Anolis series

SERIES	planes open	present	tional ribs ${ }^{2}$	type (2n)	Vertebral crest	Caudal crest	Dewlap	Presacrals	Lumbars (mode)	Aseptate caudals
[α - arrow interclavicle $=$ punctatus subsection]										
(roquet) ${ }^{3}$	+	$+$	4:0	36/34	-	-		24	3/4	7/8
cuvieri	+	\pm	3:2/3:1	36	+	+	σ°	24	3 (2)	7/8
bimaculatus	+	\pm	3:1	26-33		\pm	σ^{7}	24	3/4	5/6
cristatellus	+	\pm	2:2	36/27-29		\pm	${ }^{7}$	24/23	3/4	2-7
[α - T - interclavicle $=$ carolinensis subsection $]$										
occultus	\pm	,	6:0/5:1	36	(+)		$0^{7} 9$	24	3	all/8
darlingtoni			4:0/3:1	?/44	(+)		$0^{4} 9$	24	3	all
monticola	$+$?	3:1	36/40-48			$0^{\circ} 9 / 8$	24	5	7/8
equestris	+	$+$	3:1	36	$+$	$+$	σ^{7}	24	3	9/10
carolinensis	+	(-)	3:1/2:2	36	-		σ^{7}	24	3/4	6-8
lucius	+		3:1	36/34	-	-	σ^{*} or none	24	4	6
alutaceus	+	-	3:1	36			σ^{7}	24	5	7
$\begin{gathered} \beta \\ \text { grahami } \end{gathered}$	+	-	3:1	30/30-37	-	--	O	24	3/4	7
sagrei	$+$		2:2	30/28			$0^{\circ} \mathrm{t} / \sigma^{\circ}$	24	3/4	
1Osteological data are from the notes and tables for his thesis, which were generously pros Karyotype information is from George Gorman. ${ }^{2}$ Inscriptional ribs are calcified cartilage elements embedded in the myocommata in igu										
They are either attached to the corresponding dorsal ribs or float free in the myocommata. T inscriptional ribs is a taxonomic character reported by a numerical formula (as in the prese number of fixed ribs, second the number of free ribs. ${ }^{3}$ In my listing this is a sub-series, but as the only West Indian representative of mainlan stood, they deserve a place here.										

TABLE 3

Distribution of series
Cuba Jamaica Hispaniola

SERIES	Cuba	Jamaica	Hispaniola	Puerto Rico	Lesser Antilles
$[\alpha$ - arrow interclavicle $=$ latifrons subsection $]$					
(roquet)					+
cuvieri			+	$+$	
bimaculatus			$+$	$+$	+
cristatellus			+	$+$	
$[\alpha-\mathrm{T}-$ interclavicle $=$ carolinensis subsection $]$					
occultus +					
darlingtoni					
monticola +					
equestris +					
carolinensis					
lucius					
alutaceus +					
$\begin{gathered} \beta \\ \text { grahami } \end{gathered}$		+			
sagrei	$+$	+			

Biodiversity Heritage Library

Williams, Ernest E. 1976. "West Indian Anoles: a taxonomic and evolutionary summary 1. Introduction and a species list." Breviora 440, 1-21.

View This Item Online: https://www.biodiversitylibrary.org/item/22496
Permalink: https://www.biodiversitylibrary.org/partpdf/217

Holding Institution

Harvard University, Museum of Comparative Zoology, Ernst Mayr Library

Sponsored by

Harvard University, Museum of Comparative Zoology, Ernst Mayr Library

Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder. License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: ${ }^{1}$ Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138

[^1]: Hispaniola
 Hispaniola
 Hispaniola
 Hispaniola
 Hispaniola
 Hispaniola

