Die folgende Beobachtung verringert wieder den Abstand zwischen A. sylvaticus aus Europa und A. sylvaticus aus Asien. Der Unterschied zwischen beiden im IPO-Allel ist hier nicht absolut. In einer A. sylvaticus-Population aus den Nordalpen wurde inzwischen einmal auch das für A. flavicollis typische Allel entdeckt (GEMMEKE unpubl.). Damit ist gezeigt, daß die ursprüngliche Form auch bei A. sylvaticus in Europa noch nicht völlig eliminiert ist.

Zusammenfassung

Eine Untersuchung der Karyogramme der Apodemus-Arten aus Nepal (Abb. 1 und 2) stützt die Annahme, daß Apodemus sylvaticus von dort in die Untergattung Sylvaemus, A. gurkha aber in die Untergattung Alsomys gehört.

Ein proteinelektrophoretischer Vergleich der Waldmäuse A. sylvaticus aus Nepal ergab deutliche Unterschiede zu A. sylvaticus aus Europa, aber Übereinstimmung mit A. sylvaticus aus dem Iran (Tab. 1 und 2). Ob die Waldmäuse aus Nepal wirklich zu A. sylvaticus gehören, muß danach vorerst offen bleiben.

Literatur

DARVICHE, D.; BENMEHDI, F.; BRITTON-DAVIDIAN, J.; THALER, L. (1979): Données préliminaires sur la systématique biochimique des genres Mus et Apodemus en Iran. Mammalia 43, 427-430.

GEMMEKE, H. (1980): Proteinvariation und Taxonomie in der Gattung Apodemus (Mammalia, Rodentia). Z. Säugetierkunde 45, 348-365.

MARTENS, J.; NIETHAMMER, J. (1972): Die Waldmäuse (Apodemus) Nepals. Z. Säugetierkunde 37, 144-154.

SOLDATOVIĆ, B.; SAVIĆ, I.; SETH, P.; REICHSTEIN, H.; TOLKSDORF, M. (1975): Comparative karyolo-

gical study of the genus Apodemus (Kaup, 1829). Acta Veterinaria (Beograd) 25, 1–10. VORONTSOV, N. N.; BEKASOVA, T. S.; KRÁL, B.; KOROBITSINA, K. V.; IVANITSKAYA, E. YU. (1977): On specific status of Asian wood mice of the genus Apodemus (Rodentia, Muridae) from Siberia and Far East. Zool. Ž. (Moskva) 56, 437-449 (russ. mit engl. Zusfg.).

WINKING, H.; NIETHAMMER, J. (1970): Der Karyotyp der beiden kleinen, iberischen Pitymys-Arten (Mammalia, Rodentia). Bonn. zool. Beitr. 21, 284-289.

ZIMMERMANN, K. (1962): Die Untergattungen der Gattung Apodemus Kaup. Bonn. zool. Beitr. 13, 198-208.

Anschrift der Verfasser: Dr. HUBERT GEMMEKE und Prof. Dr. JOCHEN NIETHAMMER, Zoologisches Institut der Universität Bonn, Poppelsdorfer Schloß, D-5300 Bonn

Relative brain size in Muridae with special reference to Colomys goslingi

By H. STEPHAN and F. DIETERLEN

Max-Planck-Institut für Hirnforschung, Neurobiologische Abteilung, Frankfurt a. M. and Staatliches Museum für Naturkunde, Stuttgart

Receipt of Ms. 10. 8. 1981

Abstract

Calculated the brain size in 18 species of Muridae either directly from brain weights (12 species) or indirectly from cranial capacity measurements (12 species incl. Colomys goslingi). In six species data from both sets are presented. In Colomys (a predator in limnetic ecosystems) relative brain size (encephalization) and foramen magnum size are larger than in terrestrial Muridae of equal body weight. The differences are similar to those found when comparing water adapted with terrestrial Insectivora. Comparative brain studies are in preparation.

U.S. Copyright Clearance Center Code Statement: 0044-3468/82/4701-0038 \$ 02.50/0 Z. Säugetierkunde 47 (1982) 38-47 © 1982 Verlag Paul Parey, Hamburg und Berlin ISSN 0044-3468 / InterCode: ZSAEA 7

Introduction

Colomys goslingi, the african velvet or forest brook rat, is evidently a predator in limnetic ecosystems, as DIETERLEN and STATZNER (1981) have shown recently. Species with similar habits are found in the Insectivora families Tenrecidae (*Limnogale mergulus*; Potamogalinae: *Micropotamogale lamottei*, *M. ruwenzorii* and *Potamogale velox*), Soricidae (e.g. *Neomys fodiens*) and Talpidae (*Desmana moschata*, *Galemys pyrenaicus*). All of these species have large brains when compared with their purely or mainly terrestrial relatives. Within their brains there is a reduction in size of the structures of the olfactory system and an enlargement of the medulla oblongata, both of which are especially pronounced in *Potamogale*. As a consequence of the large medulla oblongata the foramen magnum also was found to be relatively large.

The enlargement of the medulla oblongata in *Potamogale* is due to a marked development of the trigeminal system, especially of the nucleus of the spinal trigeminal tract. The trigeminal nerves, which also are extremely thick, innervate the strongly developed vibrissae of the muzzle. The vibrissae are considered to be vibration receptors adapted for detecting prey under water. In *Colomys* they seem to be "the only sense organ used in detecting the prey" in waters (DIETERLEN and STATZNER 1981). In predators in limnetic ecosystems the trigeminal system is thought to replace the olfactory system and to become the main sensory system used in the search for food in water (STEPHAN and SPATZ 1962; STEPHAN 1967; BAUCHOT and STEPHAN 1967, 1968, 1970).

Since we do not have well preserved brains of *Colomys* we cannot make exact measurements for comparative quantitative studies. However, an indication of the size of the brain can be obtained from cranial capacity measurements, and the size of the medulla oblongata can be inferred from the cross sectional area of the foramen magnum. By comparing these data with those of terrestrial Muridae we are able to evaluate, whether *Colomys* shows differences from other Muridae similar to those shown by the water adapted Insectivora from other Insectivora.

Material and methods

The cranial capacities (CrC) and foramen magnum areas (FMA) were measured in 10 skulls of *Colomys goslingi* and compared with corresponding measurements in other murid species with similar body weights (*Hybomys univittatus, Lemniscomys striatus, Praomys natalensis*). The average data and the standard error of the mean (SEM) are given in Table 1. In order to make well founded allometric comparisons similar measurements were made on skulls of especially small-bodied (*Micromys minutus, Leggada minutoides*) and large-bodied murids (*Thamnomys venustus, Oenomys hypoxan-thus, Dasymys incomtus, Pelomys fallax, Rattus norvegicus, Malacomys longipes*), and brain weight and body weight data were collected from 12 species (Table 2).

For CrC and FMA measurements skulls, which came from specimens close to the average body weight of the given species, were selected. Average body weigths were calculated from the large collections of the Staatliches Museum für Naturkunde, Stuttgart. The CrC measurements were made by introducing fine dust shot into the cranial cavity through the foramen magnum, weighing the skull before and after introducing the dust shot, and by dividing the weight difference by 5.6121, which was found to be the weight in grams per cubic centimeter dust shot. The FMA measurements were made from enlarged photos of the foramen magnum by planimetry and/or by cutting out and weighing the photographic paper (STEPHAN et al. 1981).

Table 1

Data on body weights, cranial capacities, and foramen magnum areas in Colomys goslingi and three terrestrial species of African Muridae of similar body weight

	Sex	ц	Body weight (BoW)		SEM	Cranial capacity (CrC)	SF	SEM	Foramen magnum area (FMA)	SEM	м
			8	80	%	Emm	mm³	%	mm ²	mm ²	%
Colomys goslingi	шш	υ υ	58.8	2.4	4.1	1240	40.6	3.1	23.1	1.1	4.9
mean	11 mm + ff	o 01	58.2 58.2	9.9 6.8	11.7	1324	6/.1 58.5	0.4	23.0	1.7	5.8
Lemniscomys striatus	um H	n n	58.0 49.0	3.2	5.5 10.6	1012 932	52.4 46.6	5.2	16.2 16.2	1.0	6.2 4.4
mean % deviation from Colomys	ff + mm	10	53.5 (-8.1%)	6.2	11.7	972 (-26.6 %)	62.9	6.5	16.2 (-29.6 %)	0.8	5.1
Hybomys univittatus	um Hf	υ n	54.4 59.2	5.6 4.6	10.2 7.8	1092 1126	71.9 39.9	6.6 3.5	18.6 18.8	0.7	3.7 4.9
mean % deviation from Colomys	mm + ff	10	56.8 (-2.4%)	5.4	9.6	1109 (-16.2 %)	57.7	5.2	18.7 (-18.7%)	0.8	4.1
Praomys natalensis	um Hf	υ n	71.6 54.4	8.8	12.2 8.4	900 848	26.9 71.9	3.0	15.6 16.6	1.1	6.7 9.2
mean % deviation from Colomys	tf + ff	10	63.0 (+8.2%)	11.2	17.8	874 (-34.0%)	58.2	6.7	16.1 (-30.0%)	1.3	8.2

Body weights, brain weights and foramen magnum areas, expected values on the regression lines, indices, and percentage deviation

7 ADAN I

of the indices from Colomys

When individuals with unknown body weights are included, the average body weights are set in brackets. * brain weights converted from cranial capacities;

$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ц	Body weight	Brain weight	Expected brain weight	<u>BrW</u> EBrW	Percentage deviation from	Foramen magnum area		<u>FMA</u>	Percentage deviation from	FMA
	Colomys goding: 10' 58.2 1372* 1041 111.9 0 23.0 18.1 127.2 0 Micromys minutus 3 5.5 267 251 105.5 -199.3 8.7 9.0 96.8 -23.9 Apodemus fluctiollis 10 5.95 238.4 105.5 -199.3 8.7 9.0 96.8 -23.9 Apodemus fluctiollis 10 5.95 238.4 105.1 -20.3 8.7 9.0 96.8 -23.9 Tharmomys venueus 1 (22) 1336 1284 100.0 -141.3 20.9 13.4 -18.5 Oeromys hypocanthus 3 22.1 110 127.1 83.9 -20.3 13.0 18.4 -23.9 Dasymys incornus 1 22.5 1137 84.7 -35.8 10.5 -23.9 -16.8 Dasymys instrutus 1 1 22.5 13.9 -13.7 84.7 -36.4 -16.8 Dasymys intet		(1)	(BoW) g (2)	(BrW) mg (3)	(EBrW) mg (4)	· 100 (EI) (5)	Colomys (6)	(FMA) mm ² (7)		· 100 (FI) (9)	Colomys (10)	mm ² /cm ³ (11)
Micromys minutus 3 5.5 2.67 2.51 10.64 -11.3	Micromystrinuius 3 5.5 3.67 2.51 106.1 10.3 6.13 2.52 3.67 2.51 106.1 10.3 6.13 2.52 3.67 2.51 105.1 10.3 6.13 2.52 3.67 10.35 6.13 2.52 2.51 10.35 6.13 2.53 10.35		101	58.2	1372*	1041	131.9	C	23.0	181	1777		
Apodemus fluxicalis 10° 6.1 288* 267 1055 -199 8.7 9.0 96.8 -239 Apodemus fluxicalis 10 30 5.95 278 581 105.7 -199 8.7 9.0 96.8 -239 Apodemus fluxicalis 10 30 5.95 278 581 1050 -16.6 9.0 96.8 -23.9 Apodemus fluxicuits 1 (22.5) 1284 100.0 -24.0 20.1 1038 -18.4 Paramonys venustus 1 (22.5) 1291 1284 100.0 -23.3 20.9 13.8 -18.4 Oeromys hypoxanthus 8 9.2 116.6 1371 83.0 -36.4 13.8 -16.8 -18.4 Daymys incomuts 1 12.5 116.4 1371 84.7 -35.8 20.9 20.1 10.8 -16.8 Dayma incomuts 1 12.5 16.4 1371 84.7 -35.8 21.5	Holdemus/fracticalis 10 ² 6.1 28.2 26.3 105.7 -19.9 8.7 9.0 96.8 -23.9 Apodemus/fracticalis 10 30 596 100.0 -16.6 -18.3 -18.3 Apodemus/fracticalis 11 82.5 13.84 100.0 -24.2 20.9 20.1 100.3 Performs systematus 81 82.5 1284* 1284 100.0 -24.2 20.9 20.1 103.8 -18.4 Oeromys systematus 81 82.5 1284* 1284 100.5 -24.2 20.9 20.1 103.8 -18.4 Oeromys systematus 81 10.25 1371 83.0 -36.4 18.9 20.8 90.7 -28.7 Dasymy streamutus 81 10.1 107.8 51.7 51.8 0.0 20.1 10.3 -36.1 Dasymis incomutus 81 10.1 107.5 51.3 107.5 21.5 10.6 20.6 20.1 10.6<		3	5.5	267	251	106.4	-19.3		1.01	7. 121	5	1/.4
Apodemus flaricollis 13 5.95 2.84 2.63 105.7 -19.9 Apodemus flaricollis 10 3.05 5.96 5.96 105.1 -20.3 -18.5 Apodemus sylvaticus 282 19.4 590 536 100.0 -16.6 -18.5 Thamnomys venuestus 1 (82.5) 1380 1384 100.0 -24.2 20.9 103.8 -18.4 Oeromys hypoxanthus 8 92.5 1180 1371 83.9 -36.4 183.9 -20.3 20.7 -28.7 Daymys incontus 8 102.5 1574* 1371 83.9 -36.4 103.8 -16.8 Daymys incontus 8 102.5 1574* 146.4 107.5 -18.4 -30.2 Daymys incontus 8 102.1 102.5 $1574*$ 117.8 102.5 22.4 16.8 -16.8 Daymys incontus 8 102.1 107.5 21.4 107.5 <td>Apdemus/faciolis 13 5.95 2.84 2.63 105.7 -19.9 </td> <td></td> <td>10²</td> <td>6.1</td> <td>282*</td> <td>267</td> <td>105.6</td> <td>- 19.9</td> <td>8.7</td> <td>0.6</td> <td>96.8</td> <td>- 73 9</td> <td>17.0</td>	Apdemus/faciolis 13 5.95 2.84 2.63 105.7 -19.9		10 ²	6.1	282*	267	105.6	- 19.9	8.7	0.6	96.8	- 73 9	17.0
Apodemus fluction 10 30 750 698 107.5 -18.5 Thammomys venuests 1 (22) 129.4 590 556 110.0 -16.6 Thammomys venuests 8 82.5 128.4 105.1 -20.3 20.1 103.8 -18.4 9 (82.5) 1320 1371 83.9 -36.4 18.9 20.1 103.8 -18.4 0enomys lypoxanthus 8 92 116.4 1371 83.9 -36.4 18.9 20.1 103.8 -18.4 Denomys fallux 8 100 157.4 146.4 107.5 -18.5 22.0 80.7 -28.7 Dasymic runus 8 100 166.8 107.5 -18.5 22.0 80.7 -28.7 Dasymic runus 8 100 166.8 90.7 -18.4 -50.1 -16.8 Dasymic runus 8 100 -16.6 90.7 -28.7 -16.8 -16.8	Apodemus (pleation) 10 30 556 688 107.5 -18.5 Tharmonys cemestus 1 82.5 1534 155.1 -20.3 20.9 20.1 103.8 -18.4 Tharmonys cemestus 8 82.5 1534 1531 -20.3 20.9 20.1 103.8 -18.4 Octomys sylvacturus 8 82.5 1294+ 1284 100.5 -23.3 20.9 20.1 103.8 -18.4 Octomys sylvacturus 8 22.5 1166* 1371 83.0 -35.6 18.9 20.8 -18.4 Dasymys incomus 8 102.5 1574* 1464 107.5 -18.5 22.8 21.6 90.7 -28.7 Pelomys faitur 8 100 140.6 152.5 91.9 -30.2 17.9 20.6 20.1 10.8 20.1 16.8 Pelomys faitures 1 1 121 140.6 152.5 91.9 -20.3 17.9 10.4 </td <td></td> <td>13</td> <td>5.95</td> <td>278+</td> <td>263</td> <td>105.7</td> <td>- 19.9</td> <td></td> <td></td> <td>2.22</td> <td>1.04</td> <td>74.0</td>		13	5.95	278+	263	105.7	- 19.9			2.22	1.04	74.0
Apodemus yleatics 282 ² 19.4 500 536 110.0 -16.6 Thamnomys venustus 1 (82.5) 1396 1284 105.1 -20.3 20.9 20.1 103.8 -18.4 Oenomys bypoxanthus 8 (82.5) 1291 ⁺ 1284 100.5 -23.8 20.9 20.1 103.8 -18.4 Oenomys bypoxanthus 8 120.5 1371 83.9 -36.4 18.9 20.9 20.1 103.8 -18.4 Dasymy sincomtus 8 102.5 1464 107.5 -35.8 21.5 10.8 -16.8 Pelomys falax 8 100 146.4 107.5 -33.5 21.5 20.9 20.1 21.8 Pelomys falax 8 1010 1406.4 152.7 91.9 20.2 81.3 -36.1 Lemniscomys striatus 101 107.5 91.9 -30.2 17.9 20.0 20.1 11.8 11.6 Lemniscom	Apodemus sylvaticiss 282 ³ 194 500 536 110.0 -16.6 Thammomys venuestus 1 (82.5) 1350 1284 100.0 -24.2 20.1 103.8 -18.4 Cenomys hypoxambus 3 (92) 1150 1371 85.0 -35.6 18.9 20.1 103.8 -18.4 Cenomys hypoxambus 3 (92) 1150 1371 85.0 -35.6 18.9 20.3 103.8 -18.4 Dasymps incomtus 8 10.2 116.4 107.1 85.0 -35.8 20.1 103.8 -18.4 Pelomys fallax 8 10.0 166.8 90.7 -28.7 90.7 -28.7 Dasymic field 8 10.0 998 10.1 104.8 90.2 -16.8 Hybomy sincitatus 10 1412 ⁺ 132.7 92.1 17.9 20.2 81.3 -20.1 Hybomy sincitatus 10 1412 ⁺ 100.8 90.2 17.9 <td></td> <td>10</td> <td>30</td> <td>750</td> <td>698</td> <td>107.5</td> <td>-18.5</td> <td></td> <td></td> <td></td> <td></td> <td></td>		10	30	750	698	107.5	-18.5					
Thamnomys venustus1(82.5)13501284105.1 -20.3 -20.3 8 82.512911284100.0 -24.2 20.1103.8 -18.4 9 82.5 12911284100.0 -24.2 20.920.1103.8 -18.4 0 8^{1} 921166*137185.0 -35.6 18.920.890.7 -28.7 11 92 1166*137185.0 -35.6 18.920.890.7 -28.7 11 92 1166*137185.0 -35.6 18.920.890.7 -28.7 11 92 1166*1577137185.0 -35.6 17.920.8 -16.8 11 92 1111412*1460161890.2 -31.6 17.920.081.3 -36.1 12 11 121 1460 161890.2 -31.6 17.920.081.3 -36.1 11 121 1460 161890.2 -31.6 17.920.081.3 -36.1 121 1412^{+} 1464 107.5 -13.6 17.9 20.2 81.3 -36.1 11 121 1460 1618 90.2 20.1 17.9 10.7 90.7 121 1100 1460 1618 90.2 17.9 10.7 10.4 10.4 111 112^{+} 1464 1025 102.6 17.9 10.7	Thammonys remustus 1 (82.5) 1350 1284 105.1 -20.3 Parmomys remustus 8' 82.5 1291 ⁺ 1284 100.5 -23.8 90.1 103.8 -18.4 Oenomys hypoxanthus 3 92.5 1186* 1371 83.9 -36.4 103.5 -28.7 Dasymps incomtus 8' 102.5 1574* 1464 107.5 -18.5 21.5 103.8 -18.4 Dasymps incomtus 8' 101.0 140.6 161.8 90.7 -28.7 -28.7 Dasymps incomtus 8' 101.0 140.4 107.5 -18.5 21.8 20.0 8'1.1 Pelomys failur 1 111 141.2 ⁺ 155.6 91.9 -30.2 17.9 20.0 21.6 18.7 -36.1 Lemniscomys striatus 10' 53.5 100.7 91.8 17.9 20.0 21.6 18.7 17.9 10.4 21.6 Hybomys unicitatus 10'		282 ³	19.4	590	536	110.0	-16.6					
8° 82.5 1284* 1284 100.0 -24.2 20.9 20.1 103.8 -18.4 Oenomys bypoxantbus 3 (82.5) 1291+ 1284 100.0 -24.2 20.9 20.1 103.8 -18.4 Denomys bypoxantbus 3 (82.5) 1150 1371 83.9 -35.6 18.9 20.1 103.8 -18.5 Dasymys incontus 8' 10.25 1574* 1464 107.5 -13.6 82.9 20.2 -16.8 90.7 -28.7 Pelomys falax 8' 110 146.4 107.5 -13.6 18.7 -16.8 Pelomys falax 8' 110 146.4 107.5 -13.7 20.2 216.8 -16.8 Desting falax 8' 100 146.4 107.5 -13.7 20.2 $20.16.8$ 20.6 20.7 20.7 20.7 Hybomys univitatus 10' 56.8 100.4 102.5 12	8 8.2.5 1.2.8.4 1.2.0 -2.4.2 2.0.9 2.0.1 10.3.8 -1.8.4 <i>Cenomys hypoxanthus</i> 3 (9.2.5) 1.2.91 1.2.81 100.0 -2.4.2 2.0.9 2.0.1 10.3.8 -1.8.4 <i>Denomys hypoxanthus</i> 3 (9.2.5) 1.2.91 1.8.5 -3.5.6 1.8.9 2.0.8 9.0.7 -2.8.7 Dasymys incomtus 8 ¹ 10.2.5 1.5.4 1.371 85.0 -3.5.6 1.8.5 2.0.8 9.0.7 -2.8.7 Dasymys incontus 8 ¹ 10.2.5 1.5.4 1.371 85.0 -3.5.6 1.8.5 2.1.6.8 -16.8 Pelomys fallax 1 1 1.2.1 1.66.4 1.7.7 3.5.3 2.0.2 1.7.9 2.0.3 9.0.7 2.8.7 Hypomys univitatus 10 5.5 1.0.5 9.0.2 1.7.9 2.0.2 1.7.9 10.4.2 10.1.2 Mas musculus 10 5.8 1.0.5 1.7.9 1.7.9 <		1	(82.5)	1350	1284	105.1	-20.3					
Oeromys hypoxanthus 9 (82.5) 1291 ⁺ 1284 100.5 -23.8 Denomys hypoxanthus 8 92 1166 ⁺ 1371 83.9 -36.4 18.9 20.8 90.7 -28.7 Dasymys incontus 8 11 (92) 1166 ⁺ 1371 83.9 -36.4 18.9 20.8 90.7 -28.7 Dasymys incontus 8 102.5 1574 ⁺ 1464 107.5 -18.5 21.5 105.8 -16.8 Pelomys falax 8 100 1648 90.7 -28.7 -36.4 -36.4 -36.1 -36.1 Lemniscomys striatus 2 35.5 1007 90.1 -19.0 16.2 11.412^+ 155.6 91.9 -20.7 16.8 Hybomys univitiatus 10 ¹ 55.4 1014 ⁺ 988 100.8 -22.2 17.9 104.2 -18.1 17.9 16.2 16.8 16.2 16.8 16.8 16.2	Oeromys hypoxanthus 9 (22.5) 1291 1284 100.5 -23.8 Darymys incontus 8' 92 11550 1371 83.0 -36.4 90.7 -28.7 Darymys incontus 8' 102.5 1574 1371 83.0 -36.4 -28.7 Darymys incontus 8' 102.5 1554 1371 83.0 -36.4 -28.7 Darymys incontus 8' 102.5 1557 92.1 -30.2 -16.8 Dennys failax 8' 101 1466* 1577 92.1 -27.7 Hybomys univitatus 2 53.5 1007* 983 101.8 -22.2 81.3 -46.4 Hybomys univitatus 10' 53.5 1007* 983 101.8 -22.2 16.2 17.6 92.0 -22.7 Hybomys univitatus 10' 53.5 1007* 983 102.6 102.5 16.4 16.1 12.9 12.6 12.2 <		81	82.5	1284*	1284	100.0	-24.2	20.9	20.1	103.8	-184	16.9
Oenomys bypoxanthus 3 (92) 1150 1371 83.9 -36.4 Dasymys incomtus 8' 92 1166* 1371 83.0 -35.6 18.9 20.8 90.7 -28.7 Dasymys incomtus 8' 102.5 1164* 1371 85.0 -35.6 18.9 20.8 90.7 -28.7 Dasymys incomtus 8' 102.5 154.4* 1460 1618 90.2 -31.6 18.9 20.8 90.7 -28.7 Pelomys failux 8' 110 1406* 1527 92.1 -30.2 17.9 20.0 81.3 -16.8 Lemniscomys striatus 10' 53.5 1006* 1527 92.1 -30.2 17.9 10.4 -27.7 Mus musculus 10' 53.5 1007* 989 101.8 -22.22 11.7 12.6 92.0 -28.7 Mus musculus 11' 12' 33.10' 14.10' 53.7 10.4	Oenomys bypoxanthus 3 (92) 1150 1371 83.9 -56.4 Daymys incomus 8' 92 1166* 1371 83.0 -56.6 18.9 20.8 90.7 -28.7 Daymys incomus 8' 102.5 1574* 1464 107.5 -18.5 21.5 105.8 -16.8 Dayms incomus 8' 102.5 1574* 1464 107.5 -18.5 22.8 21.5 105.8 -16.8 Dayms incomus 8' 100 1668 90.2 -30.1 17.9 20.0 81.3 -56.8 Lemiscomy striatus 10' 53.4 101+* 98 10.2.6 17.9 22.0 81.3 -57.7 Hyborys striatus 10' 56.8 1149* 102.5 112.1 -15.0 18.7 17.9 104.2 18.1 Mascardus 31.2 57 20.1 23.3 10.4 107.5 22.0 81.1 -22.9 Leggada sp.?		6	(82.5)	1291 +	1284	100.5	-23.8					1.01
B_1 92 1166^* 1371 85.0 -35.6 18.9 20.8 90.7 -28.7 $Pelomys jacomtusB102.51162^+137184.7-35.821.5105.8-16.8Pelomys faltaxB102.51574^*1464107.5-131.622.821.5105.8-16.8Belomys faltaxB1101466^*157784.7-35.821.5105.8-16.8B1101466^*157792.1-30.221.522.081.3-36.1B1101406^*155792.1-30.217.922.081.3-36.1B1101412^+155691.9-30.217.9105.811.9-22.2Hybomys univitatus10^{2}56.81149^*1025112.1-15.081.3-22.216.217.9104.2-18.1Mus musculas312^+18.81007^+988102.6112.1-15.018.717.9104.2-18.1Mus musculas312^+18.81007^+32.956.81007^+22.738.2-22.2104.2-18.1Mus musculas312^+8.30^ 51.3102.8102.8102.8102.2102.8102.2102.2102.2102.2102.2$	Bit optimize 92 1166* 1371 85.0 -35.6 18.9 20.8 90.7 -28.7 Dasymys incomtus 11 (92) 1162* 1371 84.7 -35.8 18.9 20.8 90.7 -28.7 Dasymys incomtus 8 102.5 154.4 164.8 90.2 -35.8 21.5 105.8 -16.8 Demosys failax 8 110 1402* 153.5 1007* 99.1 110 140.5 -18.5 20.8 21.6 92.0 -23.7 Hybomys striatus 2 53.5 1007* 988 102.6 -12.2 18.7 17.9 10.4 20.7 -23.7 Max macduas 312* 18 430 51.1 -15.8 10.4 20.6 92.1 -16.8 Max macduas 312* 18 430 51.1 -15.9 10.7 -23.2 10.4 10.4 20.6 92.0 -20.7 93.1 Max macduas <t< td=""><td>6 Oenomys hypoxanthus</td><td>3</td><td>(92)</td><td>1150</td><td>1371</td><td>83.9</td><td>-36.4</td><td></td><td></td><td></td><td></td><td></td></t<>	6 Oenomys hypoxanthus	3	(92)	1150	1371	83.9	-36.4					
Dasymys incomtus11(92)1162 ⁺ 1371 84.7 -35.8 Dasymys incomtus8'102.51574*1464107.5 -18.5 22.821.5105.8 -16.8 Pelomys faltax8'112114101466151790.2 -31.6 91.9 -30.2 17.922.0 81.3 -36.1 Demiscomys striatus253.51007*983106.8 -19.0 17.9 22.0 81.3 -36.1 Hybomys univitatus10'55.41014 ⁺ 988100.6 -22.2 17.9 22.0 81.3 -36.1 Hybomys univitatus10'56.81149 ⁺ 102.6 -22.2 18.7 17.9 104.2 -18.1 Hybomys univitatus10'56.8 1149^+ 102.6 -22.2 18.7 17.9 104.2 -18.1 Hybomys univitatus10'56.8 1149^+ 102.6 -22.2 18.7 17.9 104.2 -18.1 Kattus morvegius 312^+ 18 430 51.2 23.7 23.7 23.7 23.7 23.7 23.7 24.0 22.9 Sadda minutoides 354^+ 291 2270^+ 2746 82.7 -37.7 10.4 10.6 94.0 -22.9 Hybomys univolutes 5^+ 291 2270^+ 2746 82.7 -37.7 10.4 10.6 98.1 -22.9 Radia minutoides 354^+ 291 2270^+ 2746	Daymys incomtus 11 (92) 1162 ⁺ 1371 84.7 -35.8 Pelomys fallax 8 102.5 1574 ⁺ 1371 84.7 -35.8 21.5 105.8 -16.8 Pelomys fallax 8 102.5 1574 ⁺ 1371 84.7 -30.3 10.5 91.1 112.4 135.6 91.9 -30.3 17.9 22.0 81.3 -36.1 Hybomys striatus 2 53.5 1007 983 106.8 -19.0 17.9 22.0 81.3 -36.1 Hybomys univitatus 10' 56.8 1014 ⁺ 988 102.6 -22.2 16.2 17.9 104.2 -18.1 Mas muculus 312 ⁺ 18 430 51.3 53.4 23.7 10.4 10.4 22.0 81.3 -22.9 Mas muculus 8 10.4 32.7 12.9 10.4 10.4 22.0 81.3 22.0 81.3 22.0 Mas muculus 312 ⁺		81	92	1166*	1371	85.0	-35.6	18.9	20.8	90.7	- 28.7	16.8
Dasymys incomtus8102.51574**1464107.5 -18.5 22.8 21.5 105.8 -16.8 Pelomys fallax111211460161890.2 -31.6 21.5105.8 -16.8 8^{0} 1101406**152792.1 -30.2 17.922.081.3 -36.1 Lemniscomys striatus253.51007**983106.8 -19.0 14.12^{+} 153.691.9 -20.2 17.9 22.0 81.3 -57.7 Hybomys unvirtatus10'53.51007**983100.6 -22.2 16.2 17.6 92.0 -27.7 Hybomys unvirtatus10'53.51007**983102.6 -22.2 16.2 17.6 92.0 -27.7 Mus musculus312' 8.8 102.6 -22.2 16.2 17.9 104.2 -18.1 Leggada minutoides8' $100'$ 53.8 102.6 1225 112.1 -150.0 18.7 17.9 104.2 -18.1 Leggada minutoides8' 10.4 32.7^{+6} 82.7 -37.7 10.4 10.4 22.79 22.00 98.1 -22.9 28.0 29.0 -22.9 Sattus norvegicus 35.4^{+5} 2716 81.9^{-} -37.7 10.4 10.6 98.1 -22.9 28.0^{-} 22.9^{-} 22.9^{-} 22.9^{-} 22.9^{-} 22.9^{-} 22.9^{-} 22.9^{-} 22.9^{-} 22.9^{-	Dasymys incontus 8' 102.5 1574* 1464 107.5 -18.5 22.8 21.5 105.8 -16.8 Pelomys fallax 1 1 121 1460 1618 90.2 -31.6 12.9 -30.1 13.9 -36.1 Pelomys fallax 1 1 121 1460 1537 92.1 -30.2 17.9 22.0 81.3 -36.1 Hybomys striatus 2 53.5 1007* 988 102.6 -22.2 16.2 17.6 92.0 -27.7 Hybomys univitatus 10' 56.8 11.9 102.6 -22.2 18.7 17.9 104.2 -18.1 Kast motidus 312* 18 430 51.3 83.9 -32.6 10.4 106.5 98.1 -22.2 18.7 17.9 104.2 -18.1 Kast motidus 312* 18 430 51.3 83.9 -32.7 10.4 10.4 0.4 0.4 0.4 0.4		11	(92)	1162+	1371	84.7	- 35.8					0.01
Pelomys faltax11211460161890.2 -31.6 $Pelomys faltax81101406*152792.1-30.217.922.081.3-36.191111412+153691.9-30.317.922.081.3-36.110^{1}53.51007*983100.68-19.016.217.692.0-27.711^{2}53.41014+988102.6-22.216.217.692.0-27.7Hybomys univitatus10^{1}56.81149*1025112.1-15.018.717.9104.2-18.1Mus mosculus312^{4}181014^{+}988102.6-22.218.717.9104.2-18.1Leggada minutoides810,156.81149*1025112.1-15.018.717.9104.2-18.1Leggada minutoides810,151.383.9-36.4102.482.7-37.310.410.2.9Leggada minutoides354^{5}2912270274681.9-37.310.410.698.1-22.9Segada minutoides354^{5}2912270274681.9-37.328.029.894.0-22.9Segada minutoides910,22248*274681.9-37.328.029.894.0-20.9Segada minutoides910,2221.727762$	Felomys falax 1 121 1460 1618 90.2 -31.6 Felomys falax 1 121 1406* 1527 92.1 -30.2 17.9 22.0 81.3 -36.1 Lemniscomys striatus 2 53 1050 983 106.8 -19.0 81.3 -36.1 Hybomys univitatus 10 ¹ 53.5 1007* 983 101.8 -22.2 81.3 -36.1 Hybomys univitatus 10 ¹ 53.5 1007* 983 102.6 -22.2 81.3 -36.1 Mus musculus 312 ⁴ 18 430 513 83.9 -36.4 10.4 22.0 81.1 -22.9 Mus musculus 312 ⁴ 18 430 513 83.9 -36.4 10.4 22.0 92.0 -22.7 Rattus norvegicus 312 ⁴ 18 430 513 83.9 -36.4 10.4 20.4 22.9 92.0 22.9 Rattus norvegicus 51		81	102.5	1574*	1464	107.5	-18.5	22.8	21.5	105.8	- 16.8	15.0
B ¹ 110 1406* 1527 92.1 -30.2 17.9 22.0 81.3 -36.1 Cenniscomys striatus 2 53 1050 983 106.8 -19.0 81.3 -36.1 Hybomys univittatus 10 ¹ 53.5 1007* 989 101.8 -22.2 16.2 17.6 92.0 -27.7 Hybomys univittatus 10 ¹ 56.8 1149 ⁺ 988 101.6 -22.2 16.2 17.6 92.0 -27.7 Mus musculus 312 ⁺ 18 430 513 83.9 -36.4 -18.7 17.9 104.2 -18.1 Mus musculus 312 ⁺ 18 430 513 83.9 -36.4 -19.0 18.7 17.9 104.2 -18.1 Mus musculus 312 ⁺ 18 430 513 83.9 -36.4 10.4 227.0 22.1 17.9 104.2 -18.1 Mus musculus 312 ⁺ 18 430 513 83.9 -36.4 10.4 10.4 27.0 27.9 27.9 27.9	Bit 110 1406* 1527 92.1 -30.2 17.9 22.0 81.3 -36.1 Lemniscomys striatus 2 31 1405 153.5 1007 893 106.8 -19.0 81.3 -36.1 Hybomys univitatus 10' 53.5 1007 983 10.6 -22.2 11.7 92.0 -27.7 Hybomys univitatus 10' 55.8 1149* 1025 112.1 -15.0 18.7 17.9 104.2 -18.1 Mus musculus 312 ⁴ 56.8 1149* 1025 112.1 -15.0 18.7 17.9 104.2 -18.1 Leggada p: 5 7.7 288 307 33.9 -35.4 101.2 51.3 10.4 10.6 98.1 -22.9 Leggada minutoides 8 10.4 327* 368 88.8 -32.7 10.4 10.4 22.6 91.0 -22.9 Rattus norvegicus 354 ⁵ 2910 227.4		1	121	1460	1618	90.2	-31.6					2
Lemniscomys striatus 9 111 1412 ⁺ 1536 91.9 -30.3 Hybomys striatus 10 ¹ 53.5 1000 ⁺⁺ 983 106.8 -19.0 Hybomys striatus 10 ¹ 53.5 1000 ⁺⁺ 983 101.8 -22.8 16.2 17.6 92.0 -27.7 Hybomys univittatus 10 ¹ 56.8 1149 ⁺⁺ 988 102.6 -222.8 16.2 17.6 92.0 -27.7 Mus musculus 10 ¹ 56.8 1149 ⁺⁺ 1025 112.1 -15.0 18.7 17.9 104.2 -18.1 Mus musculus 312 ⁴ 8 10.4 327 383.9 -36.4 10.4 20.2 -27.7 Leggada minutoides 8 10.4 327 368 83.7 -32.7 10.4 10.6 98.1 -22.9 Ratus norvegicus 5 (291) 2248 ⁺ 2746 82.7 -37.7 37.3 28.0 29.1 22.0 26.1 -26	Lemniscomys striatus 9 111 1412 ⁺ 1536 919 -30.3 Hybomys striatus 10 ¹ 53.5 1007* 983 100.6 -19.0 22.0 -27.7 Hybomys striatus 10 ¹ 53.5 1007* 983 100.6 -22.2 16.2 17.6 92.0 -27.7 Mus misculus 10 ¹ 56.8 1149* 1025 112.1 -15.0 18.7 17.9 104.2 -18.1 Leggada minutoides 8 ¹ 10,4 32.7 112.1 -15.0 18.7 17.9 104.2 -18.1 Leggada minutoides 8 ¹ 10,4 32.7 36.8 33.9 -36.4 104.2 -18.1 Leggada minutoides 354 ⁵ 291 2270 2746 82.7 -37.7 10.4 10.6 92.0 -22.9 Rattus norvegicus 354 ⁵ 291 2270 ⁺ 2746 82.7 -37.7 10.4 10.6 92.0 -22.9 P		8	110	1406*	1527	92.1	-30.2	17.9	22.0	81.3	-36.1	13.2
Lemniscomys striatus 2 53 1050 983 106.8 -19.0 Hybomys univitatus 10' 53.5 1007* 989 101.8 -22.8 16.2 17.6 92.0 -27.7 Hybomys univitatus 12 53.4 1014 ⁺ 988 102.6 -22.2 18.7 17.9 104.2 -18.1 Mus muscilus 312 ⁺ 18 430 513 83.9 -36.4 104.2 -18.1 Leggada spi? 5 7.7 288 307 93.7 -22.0 18.7 17.9 104.2 -18.1 Leggada spi? 5 7.7 288 307 93.7 -22.7 10.4 10.4.2 -18.1 Rattus norvegicus 354* 291 2270 2746 81.9 -37.3 28.0 29.1 -22.9 Rattus norvegicus 357 291 2246 81.9 -37.3 28.0 29.1 -21.9 Rattus norvegicus 5 291	Lemniscomys striatus 2 53 1050 983 106.8 -19.0 Hybomys univititatus 10' 53.5 1007* 989 101.8 -22.8 16.2 17.6 92.0 -27.7 Hybomys univititatus 10' 56.8 1149* 102.6 -22.2 18.7 17.9 104.2 -18.1 Mus musculus 312* 18 430 513 83 102.6 -22.2 18.7 17.9 104.2 -18.1 Mus musculus 312* 18 430 513 83 -32.7 18.7 17.9 104.2 -18.1 Mus musculus 312* 18 430 51 1025 18.7 17.9 104.2 -18.1 Regada sp.? 5 7.7 288 307 93.7 -22.0 88.1 -22.9 0.4 0.4 -22.9 Rattus norvegicus 54* 2746 82.7 -37.3 28.0 29.2 29.0 26.1 14.0<		6	111	1412+	1536	91.9	-30.3					
Hybomys univittatus 10 ¹ 53.5 1007* 989 101.8 -22.8 16.2 17.6 92.0 -27.7 Hybomys univittatus 12 53.4 1014 ⁺ 988 102.6 -22.2 18.7 17.9 104.2 -18.1 Mus musculus 312 ⁺ 18 430 513 83.9 -36.4 104.2 -18.1 Mus musculus 312 ⁺ 18 430 513 83.9 -36.4 10.4 -22.2 -18.1 Leggada sp.? 5 7.7 288 307 93.7 -29.0 18.7 17.9 104.2 -18.1 Rattus norvegicus 354 ⁵ 291 2270 2746 82.7 -37.3 28.0 29.8 94.0 -26.1 Praomys natalensis 10 ¹ 63.0 906* 1091 83.0 -37.3 28.0 29.1 2270 ⁺ 2746 82.7 -37.3 28.0 29.4 0 -26.1 Praomys natalensis 10 ¹ 63.0 96.8 1091 83.0 -37.3 26.9 21.2	Hybomys univitatus 10 ¹ 53.5 1007* 989 101.8 -22.2 15.6 92.0 -27.7 Hybomys univitatus 12 53.4 1014 ⁺ 988 102.6 -22.2 15.3 104.2 -18.1 Mus musculus 312 ⁺ 18 430 513 83.9 -36.4 104.2 -18.1 -18.0 18.7 17.9 104.2 -18.1 Leggada sp? 5 7.7 288 307 93.7 -29.0 98.1 -22.9 Rattus norvegicus 354 ⁵ 291 2270 2746 81.9 -37.3 10.4 10.6 98.1 -22.9 Rattus norvegicus 354 291 2270 2746 81.9 -37.3 28.0 94.0 -26.1 Matcomys indratensis 10 ¹ 63.0 90.6* 1091 83.0 -37.3 28.0 29.1 22.0 2746 81.9 -17.1 35.5 29.1 26.9 21.2 126.6 -0.5		2	53	1050	983	106.8	-19.0					
Hybomys univitatus1253.4 1014^+ 988 102.6 -22.2 Hybomys univitatus10156.8 1149^* 1025 112.1 -15.0 18.7 17.9 104.2 -18.1 Mus musculus 312^+ 18 430 513 83.9 -36.4 1014.2 -18.1 Leggada sp.?57.7288 307 93.7 -29.0 102.6 98.1 -22.9 Leggada sp.?57.7288 307 93.7 -29.0 10.4 10.4 227^+ 28.8 -32.7 10.4 10.6 98.1 -22.9 Rattus norvegicus 354^5 291 2270^+ 2746 88.8 -32.7 10.4 10.6 98.1 -22.9 Praomys natalensis 10^+ 63.0 906^* 1091 83.0 -37.1 16.1 18.5 86.9 -31.7 Malacomys indensis 9^+ $90^ 966^*$ 1091 83.0 -37.1 16.1 18.5 86.9 -31.7 Acomys sikapusi 5 63.5 1220^+ 1726^+ -29.9 $20.9^ 20.9^ 20.5^ -2.9^-$ Comburonys sikapusi 5 63.5 $1200^ 1097^+$ 027.5 $-29.9^ 21.2^ 21.2^ -0.5^-$ Comburonys sikapusi 5 63.5 $1200^ 1097^+$ $-29.9^ 21.2^ -26.9^ -26.9^-$ Comburonys sikapusi 5 63.5 92.5 $-29.$	Hybomys univitatus1253.41014 ⁺ 988102.6 -22.2 Mus muculus 10^1 56.8 1149^{**} 1025 112.1 -15.0 18.7 17.9 104.2 -18.1 Mus muculus 312^4 18 430 513 83.9 -36.4 10.7 18.7 17.9 104.2 -18.1 Leggada sp? 8^1 0.7 228 307 93.7 -29.0 98.1 -22.9 Leggada sp? 8^1 10.4 32.7 368 $8.2.7$ -37.3 10.4 10.6 98.1 -22.9 Rattus norvegicus 354^5 291 2270° 2746 82.7 -37.3 10.4 10.6 98.1 -22.9 Praomys natalensis 10^1 63.0 906^* 1091 83.0 -37.1 16.1 18.5 86.9 -31.7 Malacomys longipes 9^1 98 182.7 -37.3 28.0 29.1 2270° 2274 23.1 -22.9 Malacomys sikapusi 5 63.5 1825^* 1425 128.1 -2.9 26.9 21.2 126.6 -0.5 Lophuromys sikapusi 5 63.5 884 955 92.5 -22.9 26.9 21.7 26.6 -0.5 Comys dimidiatus 28^* 50.5 884 955 92.5 -22.9 26.9 21.2 126.6 -0.5 Colls from Statcher Sume from Weener (1980), 3 from Wencer (1992), 69.9		101	53.5	1007*	686	101.8	-22.8	16.2	17.6	92.0	-27.7	16.7
Hybomys unveittatus10156.81149*1025112.1-15.018.717.9104.2-18.1Mus musculus312 ⁴ 1843051383.9-36.410.2-18.1-18.1Mus musculus312 ⁴ 1843051383.9-36.410.2-18.1-12.9Leggada sp.?57.728830793.7-29.010.410.698.1-22.9Leggada minutoides8110.4327*36888.8-32.710.410.698.1-22.9Ratus norvegicus354 ⁵ 2912270274681.9-37.328.029.894.0-26.1Praomys natalensis10 ¹ 63.0906*109183.0-37.116.118.586.9-31.7Malacomys likapusi563.512001097109.4-17.12.926.921.2126.6-0.5Acomys dimidiatus28650.588495592.5-29.920.921.2126.6-0.5	Hybomys unvertatus10156.81149*1025112.1 -15.0 18.717.9104.2 -18.1 Mus musculus312*1843051383.9 -36.4 17.9104.2 -18.1 Leggada $p_{1.5}^{?}$ 57.728830793.7 -29.0 98.1 -22.9 Leggada minutoides810.4327*36888.8 -32.7 10.410.698.1 -22.9 Leggada minutoides810.4327*36888.8 -32.7 10.410.698.1 -22.9 Rattus norvegicus3592912270*274682.7 -37.3 28.029.894.0 -26.1 Praomys natalensis10163.0906*109183.0 -37.1 16.118.586.9 -31.7 Malacomys longipes91921825*1425128.1 -2.9 26.921.2126.6 -0.5 Malacomys sikapusi563.51825*1425128.1 -2.9 26.921.2126.6 -0.5 Malacomys sikapusi563.51825*1425128.1 -2.9 26.921.2126.6 -0.5 Lophuromys sikapusi563.51825*1425128.1 -2.9 26.921.2126.6 -0.5 Acomys dimidiatus2850.588495592.5 -29.9 20.921.221.221.226.921.221.6 -0.5		12	53.4	1014+	988	102.6	-22.2					
Mus musculus 312 ⁴ 18 430 513 83.9 -36.4 Leggada sp.? 5 7.7 288 307 93.7 -29.0 Leggada sp.? 5 7.7 288 307 93.7 -29.0 Leggada minutoides 8 ¹ 10.4 327* 368 88.8 -32.7 10.4 10.6 98.1 -22.9 Rattus norvegicus 354 ⁵ 291 2270 2746 81.9 -37.3 10.4 10.6 98.1 -22.9 Praomys natalensis 10 ¹ 63.0 906* 1091 83.0 -37.1 16.1 18.5 84.0 -26.1 Malacomys longipes 9 ¹ 98 1825* 1425 128.1 -2.9 26.9 21.2 126.6 -0.5 Malacomys likapusi 5 63.5 1200 1094 -17.1 -2.9 26.9 21.2 0.5 Acomys dimidiatus 28 ⁶ 50.5 884 95.5 92.5	Mus musculus 312 ⁴ 18 430 513 83.9 -36.4 Leggada sp.? 5 7.7 288 307 93.7 -29.0 Leggada minutoides 8 ¹ 10.4 327* 368 88.8 -32.7 10.4 10.6 98.1 -22.9 Rattus norvegicus 354 ⁵ 291 2270 2746 82.7 -37.3 10.4 10.6 98.1 -22.9 Rattus norvegicus 354 ⁵ 291 2270 ² 2746 82.7 -37.3 10.4 10.6 98.1 -22.9 Praomys natalensis 10 ¹ 63.0 906* 1091 83.7 -37.3 16.1 18.5 84.9 -31.7 Malacomys longipes 9 ¹ 98 1825 [*] 1425 128.1 -2.9 26.9 21.2 126.6 -0.5 Malacomys longipes 9 ¹ 98 182.5 [*] 142.5 128.1 -2.9 26.9 21.2 21.6.6 -0.5 26.9		101	56.8	1149*	1025	112.1	-15.0	18.7	17.9	104.2	-18.1	16.9
Leggada sp.? 5 7.7 288 307 93.7 -29.0 Leggada minutoides 8 ¹ 10.4 327* 368 88.8 -32.7 10.4 10.6 98.1 -22.9 Rattus norvegicus 354 ⁵ 291 2270 2746 82.7 -37.3 10.4 10.6 98.1 -22.9 Rattus norvegicus 354 ⁵ 291 2270 2746 81.9 -37.3 10.4 10.6 98.1 -22.9 Praomys natalensis 10 ¹ 63.0 906* 1091 83.0 -37.3 28.0 29.8 94.0 -26.1 Malacomys longipes 9 ¹ 98 1825* 1425 128.1 -2.9 26.9 21.2 126.6 -0.5 Acomys dimidiatus 28 ⁶ 50.5 884 955 92.5 -29.9 20.9 21.2 126.6 -0.5	Leggada sp.? 5 7.7 288 307 93.7 -29.0 Leggada minutoides 81 10.4 327* 368 88.8 -32.7 10.4 10.6 98.1 -22.9 Rattus norvegicus 354 ⁵ 291 2270 2746 82.7 -37.3 10.4 10.6 98.1 -22.9 Rattus norvegicus 354 291 2270 2746 81.9 -37.3 10.4 10.6 98.1 -22.9 Praomys natalensis 10 ¹ 63.0 906* 1091 83.0 -37.1 16.1 18.5 86.9 -31.7 Malacomys longipes 9 ¹ 98 1825* 1425 128.1 -2.9 26.9 21.2 126.6 -0.5 Malacomys sikapusi 5 63.5 1200 1097 1094 -17.1 2.0 26.9 21.2 126.6 -0.5 Acomys sikapusi 5 63.5 1200 1097 1094 -17.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0		3124	18	430	513	83.9	-36.4					
Leggada minutoides 81 10.4 327* 368 88.8 -32.7 10.4 10.6 98.1 -22.9 Rattus norvegicus 3545 291 2270 2746 82.7 -37.3 10.4 10.6 98.1 -22.9 Rattus norvegicus 52 (291) 2248* 2746 81.9 -37.3 28.0 29.8 94.0 -26.1 Praomys natalensis 10 ¹ 63.0 906* 1091 83.0 -37.1 16.1 18.5 84.9 -31.7 Malacomys longipes 9 ¹ 98 1825* 1425 128.1 -2.9 26.9 21.2 126.6 -0.5 Lophuromys sikapusi 5 63.5 1200 1097 1094 -17.1 16.1 18.5 -0.5 Acomys dimidiatus 28 ⁶ 50.5 884 955 92.5 -29.9 20.9 51.2 0.5	Leggada minutoides 8^1 10.4327*36888.8 -32.7 10.410.698.1 -22.9 Rattus norcegicus 354^5 291 2270 2746 82.7 -37.3 10.4 10.6 98.1 -22.9 Rattus norcegicus 354^5 291 2270 2746 81.9 -37.3 28.0 29.8 94.0 -26.1 Praomys natalensis 10^1 63.0 $906*$ 1091 83.0 -37.1 16.1 18.5 86.9 -31.7 Praomys natalensis 10^1 63.0 $906*$ 1091 83.0 -37.1 16.1 18.5 86.9 -31.7 Malacomys longipes 9^1 98 $1825*$ 1425 1228.1 -2.9 26.9 21.2 126.6 -0.5 Lophuromys sikapusi 5 63.5 1200 1097 1094 -17.1 18.5 86.9 -31.7 Acomys dimidiatus 28^6 50.5 884 955 92.5 -29.9 26.9 21.2 126.6 -0.5 Acomys dimidiatus 28^6 50.5 884 955 92.5 -29.9 26.9 21.2 126.6 -0.5 Malk constrained inture 60.0 -4 data of 2 individuals are from Weller (1896), 3 from Weller constrained (1903), 6 from Hradi (1905), and 298 from Nord (1965), -6 all $10750, -6$ allM KRETSCHMANN (1966): animals are from Underlined $10721, 220$ from Goldbecker (1972), and 298 from Nord (1975), -6 all	-	5	7.7	288	307	93.7	-29.0					
Kattus norvegicus 354° 291 2270 2746 82.7 -37.3 Fattus norvegicus 5² (291) 2248* 2746 81.9 -37.9 28.0 29.8 94.0 -26.1 Praomys natalensis 10 ¹ 63.0 906* 1091 83.0 -37.3 28.0 29.8 94.0 -26.1 Malacomys natalensis 10 ¹ 63.0 906* 1091 83.0 -37.1 16.1 18.5 86.9 -31.7 Malacomys longipes 9 ¹ 98 1825* 1425 128.1 - 22.9 26.9 21.2 126.6 - 0.5 Lophuromys sikapusi 5 63.5 1200 1097 109.4 -17.1 16.1 18.5 - 0.5 Acomys dimidiatus 28 ⁶ 50.5 884 95.5 92.5 -29.9	Kattus norvegicus 354° 291 2270 2746 82.7 -37.3 5° (291) 2248° 2746 81.9 -37.9 28.0 29.8 94.0 -26.1 359 (291) 2248° 2746 81.9 -37.9 28.0 29.8 94.0 -26.1 $7raomys natalensis10^{1}63.0906^{\circ}109183.0-37.116.118.586.9-31.7Malacomys longipes9^{1}981825^{\circ}1425128.1-2.926.921.2126.6-0.5Acomys sikapusi563.512001097109.4-17.116.118.586.9-31.7Acomys dimidiatus28^{\circ}50.588495592.5-29.926.921.2126.6-0.5Acomys dimidiatus28^{\circ}50.588495592.5-29.926.921.2126.6-0.560.-4 data of 2 individuals are from Weber (1896), 3 from Welcerken and Brandr (1903), 6 from Hradlerken, (1905), and 298 from Nord (1963).-6 all60.-4 data of 2 individuals are from Donalder laboratory conditions1972, 22 from Gold Bold Berken (1972), and 6 from Kruska (1975), -6 all60.-6 divide laboratory conditions1972, 22 from Gold Bold Berken (1972), and 6 from Kruska (1975), -6 all$		81	10.4	327*	368	88.8	-32.7	10.4	10.6	98.1	-22.9	32.9
52 (291) 2248* 2746 81.9 -37.9 28.0 29.8 94.0 -26.1 Praomys natalensis 359 (291) 2270 ⁺ 2746 82.7 -37.3 28.0 29.8 94.0 -26.1 Praomys natalensis 10 ¹ 63.0 906* 1091 83.0 -37.1 16.1 18.5 86.9 -31.7 Malacomys longipes 9 ¹ 98 1825* 1425 128.1 - 22.9 26.9 21.2 126.6 - 0.5 Lophuromys sikapusi 5 63.5 1200 1094 -17.1 16.1 18.5 - 0.5 Acomys dimidiatus 28 ⁶ 50.5 884 955 92.5 - 29.9	5^2 (291) 2248^* 2746 81.9 -37.9 28.0 29.8 94.0 -26.1 359 (291) 2270^+ 2746 82.7 -37.3 28.0 29.8 94.0 -26.1 $7aomys natalensis$ 10^1 63.0 906^* 1091 83.0 -37.1 16.1 18.5 86.9 -31.7 $Malacomys longipes$ 9^1 98 1825^* 1425 128.1 -2.9 26.9 21.2 126.6 -0.5 $Acomys sikapusi$ 5 63.5 1200 1097 109.4 -17.1 16.1 18.5 86.9 -31.7 $Acomys dimidiatus$ 28^6 50.5 884 955 92.5 -29.9 26.9 21.2 126.6 -0.5 $Acomys dimidiatus$ 28^6 50.5 884 955 92.5 -29.9 26.9 21.2 126.6 -0.5 $60.$ -4 data of 2 individuals are from Weberk (1896), 3 from Welcken berg Museum, Frankfurt. -3 data of 241 individuals are from $60.$ -4 data of 2 individuals are from Donaldon and Haral (1911), 50 from Ebincerk (1903), 6 from Hkdderk (1905), and 298 from Nord (1963). -6 all m KRESCHMANN (1966): animals are bred under laboratory conditions $202, 225, 226, 93$ $602, 92, 93, 600$ $-602, -602, -602, -202, 93$		3545	291	2270	2746	82.7	-37.3					
Praomys natalensis 359 (291) 2270 ⁺ 2746 82.7 -37.3 Praomys natalensis 10 ¹ 63.0 906* 1091 83.0 -37.1 16.1 18.5 86.9 -31.7 Malacomys longipes 9 ¹ 98 1825* 1425 128.1 - 2.9 26.9 21.2 126.6 - 0.5 Lophuromys sikapusi 5 63.5 1200 1097 109.4 - 17.1 126.6 - 0.5 Acomys dimidiatus 28 ⁶ 50.5 884 955 92.5 - 29.9	Praomys natalensis 359 (291) 2270 ⁺ 2746 82.7 -37.3 Praomys natalensis 10 ¹ 63.0 906* 1091 83.0 -37.1 16.1 18.5 86.9 -31.7 Malacomys longipes 9 ¹ 98 1825* 1425 128.1 - 2.9 26.9 21.2 126.6 - 0.5 Lopburomys sikapusi 5 63.5 1200 1097 1094 -17.1 18.5 86.9 -31.7 Acomys dimidiatus 28 ⁶ 50.5 884 955 92.5 -29.9 26.9 21.2 126.6 - 0.5 Acomys dimidiatus 28 ⁶ 50.5 884 955 92.5 -29.9 26.9 21.2 126.6 - 0.5 Acomys dimidiatus 28 ⁶ 50.5 884 955 92.5 -29.9 26.9 21.2 126.6 - 0.5 60 ⁴ data of 2 individuals are from Weenen für Naturkunde, Stuttgart ² skulls from Stath Naseum, Frankfurt ³ data of 241 individuals are from (60) ⁴ data of 2 individuals are		52	(291)	2248*	2746	81.9	-37.9	28.0	29.8	94.0	-26.1	12.9
Praomys natalensis 10 ¹ 63.0 906* 1091 83.0 -37.1 16.1 18.5 86.9 -31.7 Malacomys longipes 9 ¹ 98 1825* 1425 128.1 - 2.9 26.9 21.2 126.6 - 0.5 Lophuromys sikapusi 5 63.5 1200 1094 -17.1 126.6 - 0.5 Acomys dimidiatus 28 ⁶ 50.5 884 955 92.5 - 29.9	Praomys natalensis 10 ¹ 63.0 906* 1091 83.0 -37.1 16.1 18.5 86.9 -31.7 Malacomys natalensis 9 ¹ 98 1825* 1425 128.1 -2.9 26.9 21.2 126.6 -0.5 Lopburomys sikapusi 5 63.5 1200 1097 1094 -17.1 26.9 21.2 126.6 -0.5 Acomys dimidiatus 5 63.5 1200 1097 1094 -17.1 2.9 26.9 21.2 126.6 -0.5 Acomys dimidiatus 28 ⁶ 50.5 884 955 92.5 -29.9 26.9 21.2 126.6 -0.5 Acomys dimidiatus 28 ⁶ 50.5 884 955 92.5 -29.9 36.9 54.1 individuals are from 60) ⁴ data of 2 individuals are from Weber (1896), 3 from Welcerker and BraNDT (1903), 6 from HraDLICKA (1905), and 298 from NORD (1965) 6 all 1066.1 -60.5 -6.1 -6.2 -6.2 -6.2 -6.2 -6.2 -6.2 <td></td> <td>359</td> <td>(291)</td> <td>2270+</td> <td>2746</td> <td>82.7</td> <td>-37.3</td> <td></td> <td></td> <td></td> <td></td> <td></td>		359	(291)	2270+	2746	82.7	-37.3					
Malacomys longipes 9 ¹ 98 1825* 1425 128.1 - 2.9 26.9 21.2 126.6 - 0.5 Lophuromys sikapusi 5 63.5 1200 1097 109.4 - 17.1 Acomys dimidiatus 28 ⁶ 50.5 884 955 92.5 - 29.9	Malacomys longipes 9 ¹ 98 1825* 1425 128.1 - 2.9 26.9 21.2 126.6 - 0.5 Lopburomys sikapusi 5 63.5 1200 1097 109.4 -17.1 26.9 21.2 126.6 - 0.5 Acomys dimidiatus 5 63.5 1200 1097 109.4 -17.1 126.6 - 0.5 Acomys dimidiatus 28 ⁶ 50.5 884 955 92.5 -29.9 26.9 21.2 126.6 - 0.5 Acomys dimidiatus 28 ⁶ 50.5 884 955 92.5 -29.9 3 data of 241 individuals are from 660 ⁴ data of 2 individuals are from Weber (1896), 3 from Welcker and Brandr (1903), 6 from Hradlecker (1905), and 298 from Nord (1965). - 6 all - 6		101	63.0	*906	1091	83.0	-37.1	16.1	18.5	86.9	-317	18 4
Lophuromys sikapusi 5 63.5 1200 1097 109.4 –17.1 Acomys dimidiatus 28 ⁶ 50.5 884 955 92.5 –29.9	Lophuromys sikapusi563.512001097109.4-17.1Acomys dimidiatus28650.588495592.5-29.9sulls from Staatliches Museum für Naturkunde, Stuttgart 2 skulls from Senckenberg Museum, Frankfurt 3 data of 241 individuals are from60) 4 data of 2 individuals are from WEBER (1896), 3 from WELCKER and BRANDT (1903), 6 from HRDLICKA (1905), and 298 from NORD (1963) 6 allm KRETSCHMANN (1966): animals are bred under laboratory conditions		91	98	1825*	1425	128.1	- 2.9	26.9	21.2	126.6	- 0.5	15.3
28 ⁶ 50.5 884 955 92.5	18 Acomys dimidiatus 28 ⁶ 50.5 884 955 92.5 -29.9 ¹ skulls from Staatliches Museum für Naturkunde, Stuttgart ² skulls from Senckenberg Museum, Frankfurt ³ data of 241 individuals are from KLEMMT (1960) ⁴ data of 2 individuals are from WELCKER and BRANDT (1903), 6 from HRDLICKA (1905), and 298 from NORD (1963) ⁵ data of 266 individuals are from DONALDSON and HATAI (1911), 50 from EBINGER (1972), 22 from GOLDBECKER (1972), and 6 from KRUSKA (1975) ⁶ all data are from KRETSCHMANN (1966): animals are head under laborations.		5	63.5	1200	1097	109.4	-17.1					
	¹ skulls from Staatliches Museum für Naturkunde, Stuttgart ² skulls from Senckenberg Museum, Frankfurt ³ data of 241 individuals are from KLEMMT (1960) ⁴ data of 2 individuals are from WEBER (1896), 3 from WELCKER and BRANDT (1903), 6 from HRDLICKA (1905), and 298 from NORD (1963) ⁵ data of 266 individuals are from DONALDSON and HATAI (1911), 50 from EBINGER (1972), 22 from GOLDBECKER (1972), and 6 from KRUSKA (1975) ⁶ all data are from KRETSCHMANN (1966): animals are head under laboratory conditions.	18 Acomys dimidiatus	286	50.5	884	955	92.5	-29.9					
		266 individuals are from DON from KRETSCHMANN (1966): ar	IALDSON an	hred under	911), 50 fro	om EBINGER	(1972), 22	from Gold	BECKER (19.	72), and 6 fro	m KRUSKA	A (1975). – ⁶ al	l data are

Results

Cranial capacity and/or brain weight

When the three terrestrial species of approximately the same body weight as Colomys are compared with Colomys there is a deficit in the cranial capacity of -16.2 % in Hybomys, -26.6 % in Lemniscomys and -34.0 % in Praomys (Table 1). Since, however, the average body weights in Hybomys and Lemniscomys are somewhat lower (-2.4 % and -8.1 %) and in Praomys somewhat higher (+8.2 %) a regression line analysis is appropriate, and based on it, an allometric comparison. To get a stable reference line it is necessary to include more (and especially smaller and larger) species of Muridae into the comparison. Such a broader basis would not only stabilize the slope of the regression line, but would also give information about the relative position of the four species under consideration and especially of Colomys within the Muridae. Firstly, we plotted log brain weights against log body weights of 12 species of Muridae from which we have data (laboratory mice and rats excluded). The calculated regression line has the formula:

 $\log \text{ brain weight} = 1.998 + 0.567 \cdot \log \text{ body weight}$

The coefficient of correlation is 0.987.

Secondly, we plotted log *cranial capacities* (CrC) of the 12 species (so far measured) against log body weights. The calculated regression line has the formula:

 $\log \text{ cranial capacity} = 1.971 + 0.585 \cdot \log \text{ body weight}$

The coefficient of correlation is 0.968.

Finally we combined both data sets by multiplying the CrC-values with 1.036 (specific

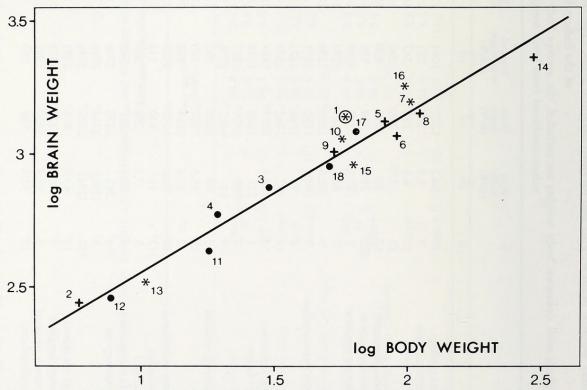


Fig. 1. Plot of log body weight and log brain weight for 18 species of Muridae. The regression line has the formula log brain weight = 1.953 + 0.603 · log body weight. The coefficient of correlation is 0.975.
 * = species with brain weights converted from cranial capacities; (B) = Colomys goslingi; + = species with brain weights combined from measured brain weights and converted cranial capacities. (Numbers as in Table 2)

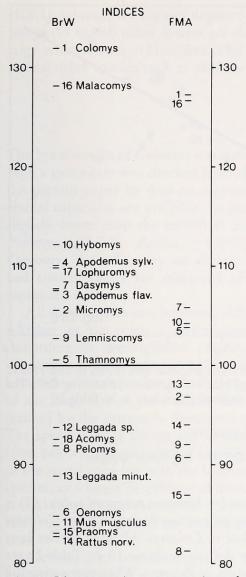
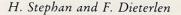


Fig. 2. Diagrammatic representation of the encephalization indices (EI) of 18 murid species (left hand scale) and foramen magnum indices (FI) of 12 murid species (right hand scale). The indices are percentage deviations from the regression lines, all points of which represent 100 %. (Numbers as in Table 2) gravity of the brain) to convert them into brain weights. Brain weights obtained in this way correspond well with the actual brain weights, as was found by STEPHAN et al. (1981) for 83 species of Chiroptera and by us in this study for 6 species of Muridae from which we have both brain weights and cranial capacities (+ in column 3 of Table 2 and in Fig. 1). However, this correlation between brain weight and cranial capacity may be confined to the relatively small-sized animals (e.g. bats and murids) and may not be valid for large species with large brains (e.g. ungulates). The regression line resulting from all 18 species has the formula:

log brain weight = $1.953 + 0.603 \cdot \log body$ weight

The coefficient of correlation is 0.975.


All three regression lines are relatively similar both in slope and y-intercept. For the following analyses we have used the common regression line of the combined material (Fig. 1). For the following comparisons this line is given a value of 100. The relative distances of the various species from this line (= encephalization indices, EI; see column 5 in Table 2 and Fig. 2) and their percentage deviation from *Colomys* (column 6 in Table 2) are given for all 18 species which were used to construct the common regression line of the Muridae.

Only Malacomys is close to Colomys. All other species have distinctly lower EI values than Colomys and the percentage deficits (column 6 in Table 2) are distributed between -15.0 % in Hybomys and -37.3 % in Rattus. When comparing the deficits of Hybomys, Lemniscomys and Praomys with those of the direct comparison of the cranial capacities (see above) they are in Hybomys -15.0 % (versus -16.2 %), in Lemniscomys -22.2 % (versus -26.6 %), and in Praomys -37.3 % (versus -34.0 %). The differences are due to the differences in the body weights between

the species and would not exist if all species had exactly the same body weights. The differences are largest in *Praomys* and *Lemniscomys*, where the average body weights are 8.2 % higher and 8.1 % lower than that of *Colomys* (see Table 1).

Foramen magnum area

When the terrestrial species of about the same body weight as Colomys are compared with Colomys there is a deficit in the foramen magnum area (FMA) of -18.7 % in Hybomys, -29.6 % in Lemniscomys and -30.0 % in Praomys (Table 1). For the regression line analysis the four species were supplemented by eight species with clearly differing body weights (see column 7 in Table 2).

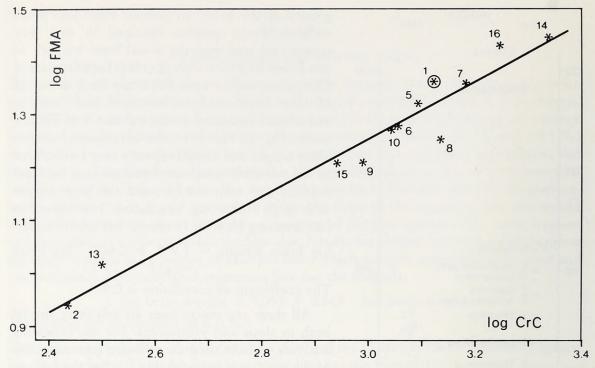


Fig. 3. Plot of log cranial capacity (CrC in mm³) and log foramen magnum area (FMA in mm²) for 12 species of Muridae. The regression line has the formula log FMA = -0.372 + 0.542 · log CrC. The coefficient of correlation is 0.976. ⊕ = Colomys goslingi. (Numbers as in Table 2)

The formula of the regression line of these 12 species is:

log foramen magnum area = $0.710 + 0.310 \cdot \log body$ weight The coefficient of correlation is 0.921.

The relative distance of each species from this line (= foramen magnum index, FI) is given in column 9 of Table 2 and in Figure 2, and the percentage deviation from Colomys in column 10 of Table 2. Again only Malacomys is close to Colomys. All other species have lower FI values than Colomys and the percentage deficits (column 10 in Table 2) are distributed between -16.8 % in Dasymys and -36.1 % in Pelomys. When comparing the deficits of Hybomys, Lemniscomys and Praomys with those obtained from the direct FMA comparison (see above), they are in Hybomys -18.1 % (versus -18.7%), in Lemniscomys -27.7 % (versus -29.6 %) and in Praomys -31.7 % (versus -30.0 %). Again the differences are due to differences in the body weights.

In general, the distances of *Malacomys* and *Colomys* from the other species appear to be similar in the foramen magnum indices and in the encephalization indices (compare both parts of Figure 2). In order to investigate whether or not *Colomys* has an disproportionally large FMA in relation to its brain size, we plotted FMA against CrC in a double logarithmic scale and made a regression analysis (Fig. 3). The coefficient of correlation is 0.952. The slope is 0.542 or, when plotting FMA against $CrC^{2/3}$ (thus equalizing the dimensions of both axes) it is 0.813. According to this slope, which is distinctly smaller than 1, the FMA in species with small brains is relatively larger than in those with large brains. The same results are obtained when FMA is compared with CrC size in each of the investigated species (column 11 in Table 2). The two species with the lowest body and brain size (*Micromys minutus* and *Leggada minutoides*) have the highest values (32.0 and 32.9 mm²/cm³) whereas the species with the largest body and brain size (*Rattus norvegicus*) has the lowest value (12.9 mm²/cm³).

When the regression line in Figure 3 is given a value of 100 the highest positive deviations are found in *Malacomys* (110.1), *Colomys* (110.0), and *Leggada minutoides*

(108.1), whereas the highest negative deviations are found in *Pelomys* (84.4) and *Lemniscomys* (91.6). All other species are close to 100. Thus, in *Colomys*, the FMA is relatively large when related to brain size. This relatively large FMA is, however, not exceptional as several other species such as *Malacomys* and *Leggada* also have relatively large FMA's.

Discussion

The brain weight of Colomys was indirectly inferred from cranial capacities. The validity of such a procedure was checked in 83 species of bats (STEPHAN et al. 1981) and is verified in the present paper by data on 6 species of Muridae, from which both brain weights and cranial capacities are available. In four of the six species the converted brain weights are slightly lower than the measured ones (*Thamnomys*, -4.9 %; *Lemniscomys*, -4.1 %; *Pelomys*, -3.7 %; *Rattus*, -1.0 %), whereas in the other two (*Micromys*, +5.6 %; *Oenomys*, +1.4 %) they are slightly higher. As in the 83 bat species, the 6 murid species had similar values for measured brain weights and for those converted from cranial capacities.

All these species are, however, either aerial or purely terrestrial and the question arises, whether or not such a direct correspondence also exists for water adapted forms. According to investigations on *Potamogale velox* the conversion factor from cranial capacity to brain weight is 1.113 instead of 1.036 (specific gravity of the brain) as found in bats and terrestrial rodents. In *Potamogale* this difference is expected to be the consequence of the large size of the medulla oblongata and of the proximal parts of the spinal cord (caused by the extremely developed spinal trigeminal nucleus; STEPHAN and SPATZ 1962). The spinal cord is always cut so that the part attached to the brain forms a square (seen from below). The extracranial caudal parts of the medulla oblongata and the proximal parts of the spinal cord left with the brain are in *Potamogale*, and may be in other water adapted species, of a larger percentage of the total brain than in terrestrial and aerial species. Thus, cranial capacity measurements of water adapted species may underestimate brain size since relatively larger parts of the total brain (as recorded by brain weight) may be outside of the skull.

According to our investigations on Insectivora the adaptation to predatory life in limnetic ecosystems is always accompanied by an enlargement of the medulla oblongata. Therefore, it can be expected, that *Colomys* also has a large medulla oblongata. The results of our FMA measurements are compatible with such an expectation, but not conclusive. A final decision only can be obtained from comparative investigations on the brain composition.

If we accept a relatively large medulla oblongata in *Colomys*, it can be expected, that in *Colomys* (1) the brain weight is larger than that resulting from a conversion factor of 1.036, and (2) the EI is somewhat higher than given in Table 2. When the conversion factor of *Potamogale* $(1.113; = 1.036 \cdot 1.074)$ is used, the brain weight of *Colomys* would be 1474 mg (1372 \cdot 1.074) instead of 1372 mg as given in Table 2, and the EI 141.7 instead of 131.9. However, *Potamogale* seems to be more strongly adapted to water than is *Colomys* and, therefore, we expect the average brain weight of *Colomys* to be anywhere between 1372 and 1474 mg, and the EI between 131.9 and 141.7.

The similarly high position of *Malacomys* both in cranial capacity and foramen magnum size needs further attention. It is of interest that *Malacomys* also is found near waters and in swamps (WALKER 1964) and its diet is at least in part animal food. "Termites, crickets, slugs, snails, caterpillars, crabs and a toad are recorded animal foods" (KINGDON 1974). However, according to DIETERLEN *Malacomys* may be found also far away from water, and its hunting strategies in water are clearly different from those of *Colomys*. Not the vibrissae but the hands seem to be used by *Malacomys* in detecting prey in shallow water.

H. Stephan and F. Dieterlen

With reference to these differences a comparative investigation of the composition of the brains (nearly equal in relative size, see Fig. 2) would be of great interest.

In conclusion, there are good indications that Colomys, which is a predator in limnetic ecosystems, has a larger brain and may have a larger medulla oblongata than do terrestrial species of Muridae. A final confirmation as well as an answer to the question, whether or not there is also a reduction of the olfactory structures, as is generally found in water adapted mammals, can only be obtained from investigations of brain components. Brain collection and quantitative investigations are in preparation.

Acknowledgements

We would like to thank Dr. D. KOCK from the Senckenberg Museum, Frankfurt, for freely making available skulls of Micromys and Rattus. The valuable help of HELGA GROBECKER (photography) and HELMA LEHMANN (typing) is gratefully acknowledged. Thanks are due to JOHN NELSON, Melbourne, for checking the English text.

Zusammenfassung

Relative Hirngröße bei Muriden mit besonderer Berücksichtigung von Colomys goslingi

Die Hirngröße von 18 Arten von Muriden wurde teils direkt aus Hirngewichten (12 Arten) oder indirekt aus Messungen der Hirnschädelkapazität (12 Arten inkl. Colomys goslingi) erschlossen. 6 Arten waren mit Daten in beiden Gruppen vertreten. Bei Colomys (einer im Süßwasser jagenden Art) sind relative Hirngröße (Encephalisation) und Foramen magnum größer als bei terrestrischen Muriden gleichen Körpergewichts. Die Unterschiede ähneln jenen, wie man sie beim Vergleich an das Wasserleben angepaßter Insectivora mit terrestrischen Insectivora findet. Vergleichende Hirnuntersuchungen sind in Vorbereitung.

References

- BAUCHOT, R.; STEPHAN, H. (1967): Encéphales et moulage endocraniens de quelques Insectivores et Primates actuels. In: Colloques internationaux du Centre National de la Recherche Scientifique,
- 163, Problèmes actuels de Paléontologie (Evolution des Vertébrés), Paris, 1967, 575–587. (1968): Etude des modifications encéphaliques observées chez les insectivores adaptés à la recherche de nourriture en milieu aquatique. Mammalia 32, 228–275.
- (1970): Morphologie comparée de l'encéphale des insectivores Tenrecidae. Mammalia 34, 514–541. DIETERLEN, F.; STATZNER, B. (1981): The african rodent Colomys goslingi Thomas and Wroughton, 1907 (Rodentia: Muridae) – a predator in limnetic ecosystems. Z. Säugetierkunde 46, 369–383.

DONALDSON, H. H.; HATAI, S. (1911): A comparison of the norway rat with the albino rat in respect

to body length, brain weight, spinal cord weight and the percentage of water in both the brain and the spinal cord. J. comp. Neurol. 21, 417-458. EBINGER, P. (1972): Vergleichend-quantitative Untersuchungen an Wild- und Laborratten. Z. Tier-

züchtung u. Züchtungsbiologie 89, 34-57.

GOLDBECKER, J. (1972): Acetylcholinesterase im Gehirn der Wanderratte und der Laborratte. Staatsexamensarbeit, Inst. Zoologie, Hannover, 1972.

HRDLICKA, A. (1905): Brain weight in vertebrates. Proc. Smithson. Misc. Coll. 48, 89-112.

KINGDON, J. (1974): East African Mammals. An Atlas of Evolution in Africa. Vol. II., Part B: Hares and Rodents. London and New York: Academic Press.

KLEMMT, L. (1960): Quantitative Untersuchungen an Apodemus sylvaticus (Linnaeus, 1758). Zool. Anz. 165, 249-275.

KRETSCHMANN, H.-J. (1966): Über die Cerebralisation eines Nestflüchters (Acomys cahirinus dimidiatus [Cretzschmar, 1826]) im Vergleich mit Nesthockern (Albinomaus, Apodemus sylvaticus [Linnaeus, 1758] und Albinoratte), I. Teil: Morphologie und Allometrie. Morph. Jb. 109, 376–410.

KRUSKA, D. (1975): Vergleichend-quantitative Untersuchungen an den Gehirnen von Wander- und Laborratten. I. Volumenvergleich des Gesamthirns und der klassischen Hirnteile. J. Hirnforsch. 16, 469-483.

NORD, H. J. (1963): Quantitative Untersuchungen an Mus musculus dom. Rutty, 1772. Zool. Anz. 170, 311-355.

STEPHAN, H.; (1967): Zur Entwicklungshöhe der Insektivoren nach Merkmalen des Gehirns und die Definition der "Basalen Insektivoren". Zool. Anz. 179, 177-199.

STEPHAN, H.; FRAHM, H.; BARON, G. (1981): New and revised data of volumes of brain structures in insectivores and primates. Folia primatol. 35, 1-29.

STEPHAN, H.; NELSON, J. E.; FRAHM, H. D. (1981): Brain size comparison in Chiroptera. Z. zool. Syst. Evolut.-Forsch. 19, 195-222.

STEPHAN, H.; SPATZ, H. (1962): Vergleichend-anatomische Untersuchungen an Insektivorengehirnen.

IV. Gehirne afrikanischer Insektivoren. Versuch einer Zuordnung von Hirnbau und Lebensweise. Morph. Jb. 103, 108–174.

WALKER, E. P. (1964): Mammals of the world. Vol. II. Baltimore: Johns Hopkins Press.

WEBER, M. (1896): Vorstudien über das Hirngewicht der Säugethiere. Festschrift f. Gegenbaur 3, 105–123.

WELCKER, H.; BRANDT, A. (1903): Gewichtswerthe der Körperorgane bei dem Menschen und den Thieren. Arch. Anthropol. 28, 1–89.

Authors' addresses: Dr. HEINZ STEPHAN, Max-Planck-Institut für Hirnforschung, Neurobiologische Abt., Deutschordenstr. 46, D-6000 Frankfurt/Main 71; Dr. FRITZ DIETERLEN, Staatliches Museum für Naturkunde, Schloß Rosenstein, D-7000 Stuttgart

The influence of the sexual cycle on the olfactory sensitivity of wild female house mice (Mus musculus domesticus)

By M. RITTNER and U. SCHMIDT

Zoological Institute, University of Bonn

Receipt of Ms. 10. 8. 1981

Abstract

Studied was the influence of the sexual cycle of the olfactory sensitivity of wild female house mice (*Mus musculus domesticus*), using a two-choice training apparatus. Large fluctuations in olfactory sensitivity related to the sexual cycle were shown with the odourant geraniol ($C_{10}H_{17}OH$). During proestrus the mice recognized a concentration of 5×10^8 molecules geraniol/cm³ air, while in metestrus they did not even respond to a concentration of 5×10^{11} molecules/cm³.

Introduction

The sense of smell plays a major role in social behaviour of house mice. For example, the sexual cycle of female mice may be accelerated when exposed to a male odour (WHITTEN 1958). Olfactory contact with strange males can even lead to a depression of gravidity (BRUCE 1959, 1962; DOMINIC 1966).

While olfactory sensitivity in males is constant over a long period of time, the females' varies in relation to the sexual cycle (SCHMIDT 1979). The results from these electrophysiological experiments and behavioral studies with rats (PIETRAS and MOULTON; PHILLIPS 1974 and VALLOWE 1975) differ greatly. Thus, studies with trained wild mice need to be conducted to determine wheater these differences are a result of methods employed.

Material and methods

Nine female mice, approximately four months old, whose parents were caught in the wild, were used in this experiment. A two-choice training apparatus consisting of transparent plexiglass half-tubes was used. The gaseous odour was pumped via a nozzle into one of the tunnels, while filtered air entered the other tube. The location of the olfactory stimulus was randomly distributed. Three experimental animals were trained to reject the odour while the other six were trained to choose the olfactory marked side. The animals were punished with an electric shock each time they responded incorrectly. Each correct response was rewarded with food (for details of this method, see SCHMIDT 1979). Vaginal smears were done every day after the mice completed 30 trials in order to determine the stage of the sexual cycle of each mouse (ALLEN 1922; ZONDECK and ASCHHEIM 1926).

U.S. Copyright Clearance Center Code Statement: 0044-3468/82/4701-0047 \$ 02.50/0 Z. Säugetierkunde 47 (1982) 47-50 © 1982 Verlag Paul Parey, Hamburg und Berlin ISSN 0044-3468 / InterCode: ZSAEA 7

Stephan, Heinz and Dieterlen, Fritz. 1981. "Relative brain size in Muridae with special reference to Colomys gosHngi." *Zeitschrift für Säugetierkunde : im Auftrage der Deutschen Gesellschaft für Säugetierkunde e.V* 47, 38–47.

View This Item Online: <u>https://www.biodiversitylibrary.org/item/162803</u> Permalink: <u>https://www.biodiversitylibrary.org/partpdf/191571</u>

Holding Institution Smithsonian Libraries and Archives

Sponsored by Biodiversity Heritage Library

Copyright & Reuse Copyright Status: In Copyright. Digitized with the permission of the rights holder. Rights Holder: Deutsche Gesellschaft für Säugetierkunde License: <u>http://creativecommons.org/licenses/by-nc-sa/3.0/</u> Rights: <u>https://www.biodiversitylibrary.org/permissions/</u>

This document was created from content at the **Biodiversity Heritage Library**, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.