A KARYOLOGICAL SURVEY OF LONICERA, II

Lily Rüdenberg and Peter S. Green *

In the first paper presenting the results of this survey, all the chromosome numbers recorded for the genus Lonicera, to that date, were assembled, together with many new counts. Since that time the study of Lonicera has continued, but to bring the investigation to a conclusion all the additional counts that have been made using the Arnold Arboretum collections are presented below (together with three further records that have appeared in the literature).

Cytological methods, documentation and nomenclature used here follow those of the first paper, to which reference should be made. ${ }^{1}$

An attempt was made to note differences in karyotype morphology and, certainly, differences in the overall size of chromosome complements were observed between different species. Also, variation in individual chromosomes, their size, centromere position, and the presence and size of satellites were noted, but considering the relatively large number of species in the genus and the few individuals investigated, it has not proved possible to compare and correlate these differences, and their groupings, with the infrageneric classification proposed by Rehder (1903).

At metaphase the chromosomes, in many cases, were so contracted that two satellites were not always visible. Thus, it was not possible to determine whether or not Lonicera modesta had a satellited chromosome pair. More details of morphology could be observed at late prophase. In some cells, pretreatment with oxyquinoline (Tjio \& Levan, 1950) caused a structural differentiation of the chromosomes by revealing positively and negatively heteropycnotic segments. Homologues of similar size could then be identified by the location of the centromere and by the individual distribution of these segments. A comparable pattern has been observed in several homologues of different species of Lonicera. Figures 1 to 10 present examples which were encountered of nuclei in mitosis (most examples taken from species in different subsections of Rehder's classification).

A few comments may be made. In four cases both diploid and tetraploid plants have been recorded within the same species. In Lonicera ferdinandii Franch., the earlier undocumented counts and all the plants at the Arnold Arboretum appear to be diploid, except for one (AA 21595) which is tetraploid. This particular bush is an old one, raised from seed of Rock 13519 collected in S.W. Kansu, China, in 1925, yet phenotypical-

[^0]ly it does not appear to differ significantly from the diploid. In L. alpigena L., Poucques (1949, pp. 129 \& 186) has recorded $n=9$ and $2 n=18$, both of which numbers were confirmed by counts on a plant in the Arnold Arboretum (AA 91-60) which, unfortunately, died before an authenticating herbarium specimen was collected. However, in this species, the tetraploid number, $2 n=36$, has been found in two plants of f. nana (Carr.) Zabel (see below). In L. maximowiczii (Rupr.) Maxim. var. sachalinensis Fr. Schmidt we can now document a tetraploid ($n=18$ and $2 n=36$), in contrast to the diploid number of $2 n=18$ recorded for the species by Janaki Ammal \& Saunders (1952, p. 540). The plant on which their count was based does not appear to have been documented and it is now impossible to know which variety may have been involved, or to confirm its identity. Lastly, in our first paper we recorded a plant of L. modesta Rehd. var. modesta as diploid ($n=9$ and $2 n=18)$ and of var. lushanensis Rehd. as tetraploid ($n=18$ and $2 n=36$), both plants having been raised from seed sent from the Lushan Botanic Gardens in China. Here, however, there is need for taxonomic reassessment, as we have pointed out (Rüdenberg \& Green, 1966, p. 225). Available herbarium material has proved inadequate to enable one to come to a sound conclusion, but it may well prove that two species are involved where diagnostic distinctions need careful delineation.

It is, perhaps, worth drawing attention to the fact that in the whole of both subsections Tataricae and Ochranthae, including many cultivars and hybrids, but with one exception, no polyploid plants have been observed. The exception is Lonicera floribunda Boiss. \& Buhse (AA $341-44)$ which is tetraploid. Within and between these subsections hybridization takes place readily, yet meiosis in most of these diploid hybrids is, with the exception of some plants with bridges, perfectly normal. A few of the plants studied at the Arnold Arboretum form bridges at anaphase I, especially $L . \times$ bella; meiosis was, therefore, checked the next year to determine its constancy and whether or not the frequency of these bridges could be correlated with the seasonal variation in climate. It was found that the number of cells showing bridges was not the same for the two years. It was smaller after the more normal spring, in contrast to one with especially cold nights and periods of drought.

LITERATURE CITED

Janaki Ammal, E. K., \& B. Saunders. 1952. Chromosome numbers in species of Lonicera. Kew Bull. 1952: 539-541.
Löve, A. 1968. IOPB Chromosome number report XIX. Taxon 17: 573-577.
Löve, A., \& D. Löve. 1966. Cytotaxonomy of the alpine vascular plants of Mount Washington. Univ. Colorado Studies, Ser. Biol. 24: 1-74.
Poucques. M.-L. de. 1949. Recherches caryologiques sur les Rubiales. Revue Gén. Bot. 56: 5-27, 74-138, 172-188. [Lonicera pp. 84-95, 129, 186.]
Rehder, A. 1903. Synopsis of the genus Lonicera. Ann. Rep. Missouri Bot. Gard. 14: 27-232.

Rüdenberg, L., \& P. S. Green. 1966. A karyological survey of Lonicera, I. Jour. Arnold Arb. 47: 222-247.
Taylor, R. L., \& G. A. Mulligan. 1968. Flora of the Queen Charlotte Islands, pt. 2.
Tjio, J. H., \& A. Levan. 1950. The use of oxyquinoline in chromosome analysis. Anal. Estac. Exp. Aula Dei 2: 21-64.
Table. Additional chromosome numbers in Lonicera

Species	n	$2 n$	Documentation and Collector	General Distribution
Subgenus Lonicera (Subgen. Chamaecerasus (L.) Rehd.) Sect. Isoxylosteum Rehd.				
Subsect. Microstylae Rehd. L. angustifolia Wall. ex DC.	9		See Mehra \& Gill in Löve (1968, p. 576). Based on Mehra \& Gill 1291 (PUNJAB), Simla, W. Himalayas	Himalayas
*L. syringantha Maxim.	18		AA 405-35, Palmer, 1 June \& 26 Aug. 1936	North \& West China
*var. wolfii Rehd.	18	36	AA 4992-2, Allen, 1 June 1927, also Dudley \& Dodd, 28 May 1965	West China
*cv. Grandiflora		36	AA 1089-61, Rüdenberg, 18 May 1966	
Sect. Isika (Adans.) Rehd.				
L. villosa (Mich.) Roem. \& Schult.		18	See Löve \& Löve (1966, p. 51). Based on Löve \& Löve 7496 \& 7591, Mt. Washington, New Hampshire	Northeastern North America

Central and western China

Western China
Northern China
Northern America and south into
Rocky Mts.

Central and southern
European Mts.

AA $151031-\mathrm{B}$, Dudley $\&$ Dodd, 28 May 1965

 1931
 AA 923-49, Green,
 4 Nov. 1965
 ‘6ISEL ұัวoŋ) S6SIZ VV
 Kansu, 1925), Kreps, 25 May 1964

AA 14999, Rehder,
5 May 1927
See Taylor \& Mulligan
(1968, p. 109). Based on CTS
35077 \& CT 35434,
Graham Is., British
Colombia
AA $14994-1$, Allen,
13 August 1927
AA $803-35$, Green,
26 May 1965

* This is the first publication of a documented count for this taxon.
\dagger Due to an error $2 n=18$ was incorrectly recorded for this plant in part I, p. 234.
f. nana (Carr.) Zabel
*L. nitida Wils.
Subsect. Vesicariae (Komar.) Rehd.
L. ferdinandii Franch. 18

Subsect. Bracteatae (Hook. f. \& Thoms.) Rehd,
L. altmannii Reg. \& Schmalh. Lvar. pilosiuscula Rehd.
Subsect. Distegiae (Raf.) Rehd.
L. involucrata (Richards.) Banks ex Spreng. Lvar. pilosiuscula Rehd.
Subsect. Distegiae (Raf.) Rehd.
L. involucrata (Richards.) Banks ex Spreng. L. var. pilosiuscula Rehd.
Subsect. Distegiae (Raf.) Rehd.
L. involucrata (Richards.) Banks ex Spreng.

Subsect. Alpigenae Rehd. L. alpigena L 9
$\stackrel{\infty}{\infty}$
\perp
$\stackrel{\infty}{\sim}$
36
\dagger Due to an error $2 n=18$ was incorrectly recorded for this plant in part $1, \mathrm{p} .234$.
Table. Additional chromosome numbers in Lonicera (Continued)

Species	n	$2 n$	Documentation and Collector	General Distribution
Subsect. Rhodanthae (Maxim.) Rehd.				
*L. tatarinowii Maxim.		18	AA 17-44-B (Meyer 1938a, China, 1913), Palmer, 27 May 1936	Northern China \& Korea
L. maximowiczii (Rupr.) Maxim. *var. sachalinensis Fr. Schmidt		36	AA 10102-C (Wilson 8875, Korea, 1917), Dudley, 4 June 1965, and Rüdenberg, 25 May 1966	Saghalin and Korea
	18		AA 598-38-B, Dudley, 4 June 1965, and Rüdenberg, 25 May 1966	
L. orientalis Lam.		18	AA 201-38-A, Dudley, 4 June 1965	Asia Minor to western China
	9		AA 956-34 (Balls 1656, Turkey, 1934), Green, 2 June 1964	
*var. longifolia (Dipp.) Rehd.		18	AA 15102, Palmer, 13 June 1940	
Sect. Lonicera (Sect. Coeloxylosteum Rehd.)				
Subsect. Tataricae Rehd.				
L. tatarica L.		18	AA 288-41-A, Green, 31 May 1965	Eastern Europe to Turkestan
	9		AA 69-64, Rüdenberg, 10 May 1968	

AA $716-45-\mathrm{B}$, Kreps,
26 May 1964
AA 1199-62, Gibson,
7 May 1968
AA 96-61, Rüdenberg,
7 May 1966
AA 97-61, Rüdenberg,
27 May 1966
AA 1240-64, Rüdenberg,
10 May 1968
AA 15141, Kobuski \&
Metcalfe, 16 May 1930
AA 762-64, Rüdenberg, 10 May 1968
AA 572-1-A, Palmer,
15 May \& 7 July 1936
(as AA 572)
(as AA 572)
AA 1232-53, Green,
26 May 1965
AA 1023-60, Gibson,
17 May 1968
$\stackrel{\infty}{\sim}$
$\stackrel{\infty}{\sim}$
$\stackrel{\infty}{\sim}$
$\stackrel{\infty}{\sim}$

Table. Additional chromosome numbers in Lonicera (Continued)

Species	n	$2 n$	Documentation and Collector	Distribution General
L. \times muendeniensis Rehd.	9		AA 1314-62, Rüdenberg, 10 May 1968	Cultivation
	9		AA 793-64, Rüdenberg, 10 May 1968	
		18	AA 1193-65, Rüdenberg, 10 May 1968	-
f. xanthocarpa Hort.		18	$\begin{aligned} & \text { AA } 188-36-\mathrm{A}, \text { Kreps, } \\ & 25 \text { May } 1964 \end{aligned}$	
L. xylosteum L .	9		AA 765-34, Rüdenberg, 26 May 1966	Europe to Altai Mts.
	9		AA 358-62, Gibson, 17 May 1968	
*f. mollis (Regel) Rehd.	9		AA 66-37, Kreps, 26 May 1964	
*cv. Nana	9		AA 626-62, Rüdenberg, 16 May 1968	
L. chrysantha Turcz.	9		AA 1044-37-A, Green, 31 May 1965	Northeast Asia and Japan
f. regeliana (Kirchn.) Rehd.	9		AA 587-54, Green, 20 May 1965	:
*L. \times pseudo-chrysantha Braun	9		AA 686-54, Rüdenberg, 18 May 1966	Cultivation
L. koehneana Rehd.	9		AA 632-64, Rüdenberg, 10 May 1968	Western China

[^1]f. translucens (Carr.) Zabel
Subsect. Longiflorae Rehd.
L. japonica Thunb.
var. halliana (Dippel) Nicholson

* This is the first publication of a documented count for this taxon.
Table. Additional chromosome numbers in Lonicera (Continued)

* This is the first publication of a documented count for this taxon.
[P. S. G.]
Royal Botanic Gardens
Kew, Richmond, Surrey
England

EXPLANATION OF PLATES

Figures 1-10. Mitotic divisions in species of Lonicera. All photomicrographs (X ca. 1800) show cells at metaphase with the exception of Fig. 9, which is at late prophase.

PLATE I

Fig. 1, L. altmannii var. pilosiuscula (AA 14999); Fig. 2, L. involucrata (AA 16-44) ; Fig. 3, L. modesta (AA 24-36) ; Fig. 4, L. morrowii (AA 1283-65); Fig. 5, L. \times bella (AA 48-42-B); Fig. 6, L. chrysantha (AA 1044-37-A); Fig. 7, L. japonica cv. Aureo-Reticulata (AA 1445-63); Fig. 8, L. etrusca (AA 231-46).

PLATE II

Fig. 9, L. etrusca (AA 231-46), note differentially stained chromosome segments at end of prophase. Fig. 10, L. \times heckrottii (AA 113-49-A), ca. pentaploid.

Rüdenberg \& Green, Lonicera, II

Rüdenberg \& Green, Lonicera, II

Biodiversity Heritage Library

Rüdenberg, Lily and Green, P. S. 1969. "A Karyological Survey of Lonicera, II." Journal of the Arnold Arboretum 50(3), 449-461.

https://doi.org/10.5962/p. 185765.

View This Item Online: https://www.biodiversitylibrary.org/item/326149
DOI: https://doi.org/10.5962/p. 185765
Permalink: https://www.biodiversitylibrary.org/partpdf/185765

Holding Institution

Harvard University Botany Libraries

Sponsored by

Harvard University Botany Libraries

Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder.
License: http://creativecommons.org/licenses/by-nc-sa/4.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: * In this survey, the cytological investigations have been carried out by one of us (L.R.), and the complementary taxonomy by the other (P.S.G.).
 ${ }^{1}$ Part I was published in Jour. Arnold Arb. 47: 222-247. 1966.

[^1]: L. quinquelocularis Hardw.

