TRANSACTIONS

OF THE

SOUTH AFRICAN PHILOSOPHICAL SOCIETY.

NOTE ON THE THREE-POINT, OR POTHENOT'S, PROBLEM.

By H. G. Fourcade.

(Read January 27, 1897.)
The ordinary methods of computation of the position of a point, given the angles subtended by three other points of known positions are chiefly :-

First method.

B 1. Compute the length and "angle of direction" of a from the co-ordinates of C and A .
2. Compute the length and angle of direction of β from C and B .
3. Put PAC $=x, \mathrm{PBC}=y$. Then $\tan \frac{1}{2}(x-y)=\tan \left(z-45^{\circ}\right) \tan \frac{1}{2}(x+y)$ Where

$$
\tan z=\frac{a \sin \beta}{b \sin a}
$$

and

$$
{ }_{51}{ }_{51}^{\frac{1}{2}(x+y)=180^{\circ}-\frac{1}{2}(\alpha+\beta+\mathrm{C}) .}
$$

4. Compute the co-ordinates of P either from triangle PCA or triangle PBC .

Second method.

1. Compute the length and angle of direction of C from the co-ordinates of A and B.
2. Compute the co-ordinates of O from the triangle OAB in which $\mathrm{OAB}=\beta$ and $\mathrm{OBA}=\alpha$.
3. Compute the angle of direction of OC from the co-ordinates of O and C .
4. Compute the co-ordinates of P either from triangle POA or PBO.

Both these methods are avoided by many surveyors on account of their length. A shorter method will now be given, with a numerical example showing the arrangement of the computation.

Taking the middle point C for origin, put $x^{\prime} y^{\prime}$ and $x^{\prime \prime} y^{\prime \prime}$ for the co-ordinates of A and B . The equations to the circles (1) through A and C and containing the angle $a(2)$ through C and B and containing the angle β are

$$
\begin{aligned}
& \tan a\left\{y\left(y-y^{\prime}\right)+x\left(x-x^{\prime}\right) \succ-x y^{\prime}+y x^{\prime}=0\right. \\
& \tan \beta\left\{y\left(y-y^{\prime \prime}\right)+x\left(x-x^{\prime \prime}\right)\right\}-y x^{\prime \prime}+x y^{\prime \prime}=0
\end{aligned}
$$

reducible to

$$
\begin{aligned}
& y^{2}+x^{2}+\mathrm{A} y-\mathrm{B} x=\mathrm{O} \\
& y^{2}+x^{2}-\mathrm{C} y+\mathrm{D} x=\mathrm{O}
\end{aligned}
$$

Where

$$
\begin{array}{ll}
\mathrm{A}=x^{\prime} \cot a-y^{\prime} & \mathrm{B}=y^{\prime} \cot a+x^{\prime} \\
\mathrm{C}=x^{\prime \prime} \cot \beta+y^{\prime \prime} & \mathrm{D}=y^{\prime \prime} \cot \beta-x^{\prime \prime}
\end{array}
$$

Then

$$
\begin{gathered}
\frac{y}{x}=\frac{\mathrm{B}+\mathrm{D}}{\mathrm{~A}+\mathrm{C}}=m \\
m^{2} x+x=\mathrm{B}-m \mathrm{~A} \\
x=\frac{\mathrm{B}-m \mathrm{~A}}{m^{2}+1} \quad y=m x
\end{gathered}
$$

Example.			
$\mathrm{A}-1811 \cdot 59$	$-1018 \cdot 55$	$y^{\prime}=-1376 \cdot 55$	$x^{\prime}=+406 \cdot 90$
$\mathrm{~B}+\quad 6 \cdot 81$	$-930 \cdot 26$	$y^{\prime \prime}=+441 \cdot 85$	$x^{\prime \prime}=+495 \cdot 19$
$\mathrm{C}-435 \cdot 04$	$-1425 \cdot 45$	$0 \cdot 0$	$0 \cdot 00$
$a=64 \cdot 7 \cdot 40$			
$\beta=20 \cdot 33 \cdot 20$			
$+9 \cdot 685719$	$+9 \cdot 685719$	$+0 \cdot 425980$	$+0 \cdot 425980$
$+2 \cdot 609488$	$-3 \cdot 138792$	$+2 \cdot 694772$	$+2 \cdot 645275$
$+2 \cdot 295207$	$-2 \cdot 824511$	$+3 \cdot 120752$	$+3 \cdot 071255$
$+197 \cdot 34$	$-667 \cdot 59$	$+1320 \cdot 54$	$+1178 \cdot 30$
$-y^{\prime}+1376 \cdot 55$	$+x^{\prime}+406 \cdot 90$	$+y^{\prime \prime}+441 \cdot 85$	$-x^{\prime \prime}-495 \cdot 19$
$\mathrm{~A}+1573 \cdot 89$	$\mathrm{~B}-260 \cdot 69$	$\mathrm{C}+1762 \cdot 39$	$\mathrm{D}+683 \cdot 11$
$\mathrm{~A}+3 \cdot 196974$	$-2 \cdot 662730$	$\mathrm{~A}+1573 \cdot 89$	$\mathrm{~B}-260 \cdot 69$
$m 9 \cdot 102482$	$0 \cdot 006906$	$+3336 \cdot 28$	$+422 \cdot 42$
$+2 \cdot 299456$	$x-2 \cdot 655824$	$2 \cdot 625744$	$m 9 \cdot 102482$
$-m \mathrm{~A}-199 \cdot 28$	9102482	$3 \cdot 523262$	$m^{2} 8 \cdot 204964$
$+\mathrm{B}-260 \cdot 69$	$y-1 \cdot 758306$	$\frac{m^{2}+1}{}$	$=1 \cdot 01603$
$-459 \cdot 97$		$y-57 \cdot 32$	$x-452 \cdot 71$
		$-435 \cdot 04$	$-1425 \cdot 45$
	Co-ordinates of $\mathrm{P}:$	$-492 \cdot 36$	$-1878 \cdot 16$

A check is afforded by the computation of the angles of direction P A and P B. P C is given by

$$
\tan -\mathrm{r} m .
$$

March, 1898.

Biodiversity Heritage Library

Fourcade, Henry George. 1895. "NOTE ON THE THREE-POINT, OR
POTHENOT'S, PROBLEM." Transactions of the South African Philosophical Society
9, 51-53. https://doi.org/10.1080/21560382.1895.9526315.

View This Item Online: https://www.biodiversitylibrary.org/item/113784
DOI: https://doi.org/10.1080/21560382.1895.9526315
Permalink: https://www.biodiversitylibrary.org/partpdf/175387

Holding Institution

Field Museum of Natural History Library

Sponsored by

The Field Museum's Africa Council

Copyright \& Reuse

Copyright Status: NOT_IN_COPYRIGHT

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

