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The present study combined video confocal laser mi-
croscopy (1) and tissue reflectance and autofluorescence
to visualize mucus position and mucociliary transport in
excised  living  gill  tissue  from  the  blue  mussel  Mytilus
edulis.  Rafts  of  mucus  and  embedded  particles  were
transported atop a periciliary space traversed by frontal
cilia, which engaged the mucus layer and moved it during
the effective stroke, disengaging and completing the cycle
during the recovery stroke. These results confirm the two-
layer model for mucociliary transport in the mussel gill.
Given the conservative nature of ciliated epithelial struc-
ture  and  function  (2.  3),  and  the  structural  similarity  of
mucociliary surfaces as diverse as terrestrial  vertebrate
respiratory epithelium and molluscan gill,  the two-layer
mechanism  of  mucociliary  transport  may  be  a  general
feature ofMetazoan biology.

Mucociliary  transport  is  a  common  mechanism  of
particle  movement  along  epithelial  surfaces  in  many
Metazoan  taxa  (4,  5.  6).  Examples  include  cleaning  of
respiratory  surfaces  in  both  terrestrial  vertebrates  and
aquatic  invertebrates,  as  well  as  suspension-feeding  in
aquatic  invertebrates.  Indeed,  transport  of  material  on
terrestrial vertebrate epithelia appears to be impossible
without the intervention of mucus as a mechanical cou-
pler (7, 8). In humans, disorders of mucociliary transport
are  manifested  in  diseases  such  as  cystic  fibrosis  and
chronic bronchitis (9). The mucus layer also reduces de-
hydration of respiratory surfaces in terrestrial animals
a  prerequisite  for  life  on  land.  Although  the  observa-
tional techniques employed to date have not yielded con-
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sistent  results,  some  indirect  data  support  a  two-layer
model,  with  a  viscous  mucus  layer  atop  a  less  viscous
periciliary fluid,  within which the cilia  beat (4,  8,  10,  11,
12, 13). However, the exact position of mucus and mech-
anism  of  mucociliary  transport  have  never  been  ob-
served directly  in living tissue.  Previous attempts to di-
rectly  observe  mucociliary  transport  have  been  con-
founded by the transparency of mucus and the inability
to achieve sufficient field depth to visualize both cilia and
three-dimensional transport simultaneously. In the pres-
ent study, \-i*m fluorescent particles were used to help
render mucus visible after its incorporation in the mucus
raft, and the confocal laser technique was employed to
visualize fluorescence and autoreflectance with high res-
olution and achieve sufficient and selectable field depth
in live preparations.

Excised  bivalve  gill  tissue  is  an  ideal  preparation  for
the  microscopic  observation  of  mucociliary  transport,
since  it  is  normally  immersed  in  an  aqueous  medium
and ciliary activity remains intact for prolonged periods
(14). Pieces of the posterior extremity of each of the four
demibranchs  of  adult  Afyti/us  edulis  were  excised  and
observed using a modified video confocal laser technique
( 1 ); these conditions enabled the visualization of mucus,
direction of water flow, and particle transport.

Mucus on the mussel gill was located atop the frontal
cilia of each filament, between the apposing rows of lat-
ero-frontal  cirri  (Figs.  1-4).  The  spatial  configuration  of
the mucus was in the form of rafts that varied from 10
to 25 ^m in thickness, tapering to occasional slight gaps.
Such a large range of thickness could be due to unequal
secretion, unequal distribution on the surface, or both.
as well as to the differential states of hydration of mucus
secreted  at  slightly  different  times.  The  physiological
stress  of  sectioning  and  mounting  probably  also  in-
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Figures 1-2. Lateral view of frontal surface of ;l/r/;/.s cclulis gill filament. The two-layer structure is
evident, comprising the periciliary space (ps). within which the frontal cilia (fc) beat, and a mucus raft (mr).
propelled by the frontal cilia (arrow). The latero-frontal cirri (If) are visible when within the plane of focus.
The splayed cirral 'V (upper arrow head) belongs to one of the shorter cirri, which does not extend over the
raft surface. The V width, nuclei (bottom arrow head land the height of the microvillar lay er(mv) were used
for scale calibration.

Figure .V Interpretive drawing (not to scale) showing two transversally -sectioned gill filaments (gf).
latero-frontal cirri (If), frontal cilia (fc). position and direction of movement of mucus raft with included
particle masses (mr. straight solid arrow), direction of latero-frontal cirral beat (curved solid arrow), direc-
tion ofpallial fluid (low over filaments (hollow arrow), and direction of frontal cilia effective stroke (small
arrow). Dotted line represents plane of view in Figs. 1 , 2. 4. V, ventral orientation.

Figure 4. Live crustacean larva (arrowhead) trapped within the periciliary space (ps), between frontal
cilia (fc) and mucus raft (mr).

Scale bar valid for Figs. I, 2, 4.

creased the secretion of  mucus and thus the thickness
of the rafts, and the highly reflective particles may have
presented a halo effect that exaggerated the raft thick-
ness.  The  mucus  rafts  were  transported  in  the  normal
direction by the frontal cilia, i.e., toward the ventral mar-
gin of the gill (Figs. 1, 2); although observations of their
entrainment into the ventral groove were not made, this
is  the  only  available  destination.  It  was  possible  to  ob-
serve beating of individual frontal cilia only at a record-
ing speed >120 frames/s,  and even under these condi-
tions the uniform contrast presented by the many sur-
rounding  cilia  precluded  detailed  observations  of
individual  ciliary  beat  or  clear  still  micrographs.  Video

sequences  showed  that  the  tips  of  individual  cilia  in-
teracted with the mucus rafts during the effective stroke
and disengaged and completed the cycle below the rafts
during the recovery stroke. Both the frontal cilia length
(about  19-24  /um)  and  the  periciliary  space  (13.3-
15.3 urn) were considerably larger than the correspond-
ing  cilia  length  and  putative  periciliary  space  (4-6  ^m)
in the terrestrial vertebrate respiratory epithelium (4, 13);
this may be a consequence of the presence of water on
both sides of the raft in the aquatic medium of the mussel
gill. The frontal cilia length is in line with or only slightly
larger than that suggested by previous data for M. edit/is
(15), when curvature, fixation shrinkage, and the height
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of the microvillar layer are accounted for. In the present
study,  scanning  electron  microscopy  of  fixed  filaments
corrected for shrinkage, confocal laser microscopy, and
light  microscope  measurements  on  live  desquamated
frontal cells gave good agreement for frontal cilia lengths.
The 4-9  /xm by  which  the  frontal  cilia  length exceeded
the  periciliary  space  height  probably  allows  both  for
bending during the effective stroke and for sufficient in-
sertion into the mucus raft.

These  observations  confirm  the  two-layer  model  for
mucociliary  transport  and  position  on  the  ciliated  epi-
thelium  of  the  mussel  gill.  The  mechanism  for  mucus
positioning above the periciliary space is not yet known,
but  is  probably  a  combination  of  capillary  action
through the periciliary space upon secretion and the sub-
sequent inability of the newly hydrated and cross-linked
macromolecules  to  penetrate  between  the  dense  cilia
cover  (16).  The frontal  cilia  are  thus free to  beat  in  the
much less viscous ( 18) periciliary fluid (which is contin-
uous with the water in the palleal cavity through the gaps
in  the  mucus  rafts),  and  the  detailed  characteristics  of
two-layer mucociliary transport (4) are thus consequent.
The robustness of the two-layer spatial organization was
evident from observations of large pieces of detritus and
even  an  apparently  live  trapped  crustacean  larva  that
presumably entered the periciliary space through a gap
in the rafts (Fig. 4).

The observations of  the present study show that the
latero-frontal cirri beat perpendicular to the mucus raft
movement  (Fig.  3).  Previous  reports  (1)  and  work  in
progress show that these cirri intercept suspended parti-
cles and deviate them onto the frontal surface; the pres-
ent observations suggest that the particles are in fact de-
viated onto the mucus raft, since most cirral tips extend
several micrometers above the raft (deduced from the ab-
sence of cirraPY's at the distal extremities in Fig. 2). This
probably  represents  a  major  mode  of  particle  capture
and  initial  transport  in  the  mussel  a  mechanism  that
has eluded direct observation to date in any bivalve spe-
cies.

The role  of  mucus in  bivalve  suspension-feeding has
been a subject of considerable controversy for decades,
focusing on whether it is used in normal feeding or only
in the cleaning of feeding surfaces, i.e.. the production of
pseudofeces  (17,  18,  19,  20,  21,  22).  Video  endoscopy
and direct sampling of the contents of the ciliated tracts
of bivalves displaying relaxed, normal feeding behavior
has clearly demonstrated that mucus is involved in both
cleaning and feeding (5,21). Subsequent mucocyte map-
ping has revealed that different types of mucus are used
in  different  anatomical  contexts,  which  themselves  are
directly  related to  the  different  aspects  of  particle  pro-
cessing  (23,  24,  25,  26).  In  addition,  the  continuum  of
mucocyte distribution extends well into the esophagus.

beyond the sites of pseudofeces production (27). Recent
opposition to this body of data centers on the conjecture
that  artifactual  secretion  of  mucus  might  occur  in  any
non-natural situation (22).  These objections would pre-
clude virtually all studies of bivalve feeding mechanisms,
as well  as most other physiological  investigations. Sim-
ilarly,  other  workers  (28)  discount  //;  vitro  studies  al-
together, even though some aspects of particle processing
have been shown to be unaffected by dissection (25). In
vitro  studies  and  other  manipulations  impose  limita-
tions, as do all investigative techniques, but their utility
should not be arbitrarily rejected (29).

The  chief  morphological  and  biochemical  features  of
ciliary beat are essentially identical throughout the Met-
azoa (30), as are the structure and function of mucocili-
ary  epithelia  (2,  3,  4.  13).  It  is  thus  likely  that  (with  the
exception  of  several  phyla  that  lack  cilia)  the  two-layer
mechanism of mucociliary transport is a general feature
of Metazoan biology.  This simple but elegant two-layer
system also serves important functions other than parti-
cle  transport  in  the  Metazoa.  The  periciliary  fluid  layer
in terrestrial vertebrates, for example, has assumed a crit-
ical role in gas exchange through an aqueous medium
and as a solvent for molecules detected by olfaction. The
two-layer  system is  crucial  to  both the functioning and
the maintenance of such basic biological processes.
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